E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[Crossref]

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminat, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A. 87, 041801 (2013).

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 1885 (2012).

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).

F. Lemoult, M. Fink, and G. Lerosey, “Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens,” Waves in Random and Complex Media 21(4), 614–627 (2011).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves in Random and Complex Media 21(4), 591–613 (2011).

[Crossref]

F. Lemoult, J. de Rosny, M. Fink, and G. Lerosey, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).

[Crossref]
[PubMed]

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[Crossref]

F. Simonetti, M. Fleming, and E. A. Marengo, “Illustration of the role of multiple scattering in subwavelength imaging from far-field measurements,” J. Opt. Soc. Am. A 25(2), 292–303 (2008).

[Crossref]
[PubMed]

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16(25), 20157–20165 (2008).

[Crossref]
[PubMed]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036606 (2004).

[Crossref]
[PubMed]

P. de Vries, D. V. van Coevorden, and A. Lagendijk, “Point scatterers for classical waves,” Rev. Mod. Phys. 70(2), 447–466 (1998).

[Crossref]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antenn. Propag. 37(7), 918–926 (1989).

[Crossref]

G. S. Sammelmann and R. H. Hackman, “Acoustic scattering in a homogeneous waveguide,” J. Acoust. Soc. Am. 82(1), 324–336 (1987).

[Crossref]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antenn. Propag. 37(7), 918–926 (1989).

[Crossref]

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminat, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A. 87, 041801 (2013).

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16(25), 20157–20165 (2008).

[Crossref]
[PubMed]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036606 (2004).

[Crossref]
[PubMed]

F. Lemoult, J. de Rosny, M. Fink, and G. Lerosey, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).

[Crossref]
[PubMed]

P. de Vries, D. V. van Coevorden, and A. Lagendijk, “Point scatterers for classical waves,” Rev. Mod. Phys. 70(2), 447–466 (1998).

[Crossref]

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminat, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A. 87, 041801 (2013).

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 1885 (2012).

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves in Random and Complex Media 21(4), 591–613 (2011).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens,” Waves in Random and Complex Media 21(4), 614–627 (2011).

[Crossref]

F. Lemoult, J. de Rosny, M. Fink, and G. Lerosey, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).

[Crossref]
[PubMed]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antenn. Propag. 37(7), 918–926 (1989).

[Crossref]

G. S. Sammelmann and R. H. Hackman, “Acoustic scattering in a homogeneous waveguide,” J. Acoust. Soc. Am. 82(1), 324–336 (1987).

[Crossref]

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[Crossref]

P. de Vries, D. V. van Coevorden, and A. Lagendijk, “Point scatterers for classical waves,” Rev. Mod. Phys. 70(2), 447–466 (1998).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 1885 (2012).

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves in Random and Complex Media 21(4), 591–613 (2011).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens,” Waves in Random and Complex Media 21(4), 614–627 (2011).

[Crossref]

F. Lemoult, J. de Rosny, M. Fink, and G. Lerosey, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).

[Crossref]
[PubMed]

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 1885 (2012).

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves in Random and Complex Media 21(4), 591–613 (2011).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens,” Waves in Random and Complex Media 21(4), 614–627 (2011).

[Crossref]

F. Lemoult, J. de Rosny, M. Fink, and G. Lerosey, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).

[Crossref]
[PubMed]

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[Crossref]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminat, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A. 87, 041801 (2013).

P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16(25), 20157–20165 (2008).

[Crossref]
[PubMed]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036606 (2004).

[Crossref]
[PubMed]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[Crossref]

G. S. Sammelmann and R. H. Hackman, “Acoustic scattering in a homogeneous waveguide,” J. Acoust. Soc. Am. 82(1), 324–336 (1987).

[Crossref]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036606 (2004).

[Crossref]
[PubMed]

I. Tolstoy, “Superresonant systems of scatters I,” J. Acoust. Soc. Am. 80(1), 282–294 (1986).

[Crossref]

P. de Vries, D. V. van Coevorden, and A. Lagendijk, “Point scatterers for classical waves,” Rev. Mod. Phys. 70(2), 447–466 (1998).

[Crossref]

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminat, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A. 87, 041801 (2013).

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[Crossref]

O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antenn. Propag. 37(7), 918–926 (1989).

[Crossref]

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in sparse bases,” Inverse Probl. 26(10), 105016 (2010).

[Crossref]

I. Tolstoy, “Superresonant systems of scatters I,” J. Acoust. Soc. Am. 80(1), 282–294 (1986).

[Crossref]

G. S. Sammelmann and R. H. Hackman, “Acoustic scattering in a homogeneous waveguide,” J. Acoust. Soc. Am. 82(1), 324–336 (1987).

[Crossref]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat. Commun. 3, 1885 (2012).

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminat, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A. 87, 041801 (2013).

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(3), 036606 (2004).

[Crossref]
[PubMed]

F. Lemoult, J. de Rosny, M. Fink, and G. Lerosey, “Resonant metalenses for breaking the diffraction barrier,” Phys. Rev. Lett. 104(20), 203901 (2010).

[Crossref]
[PubMed]

P. de Vries, D. V. van Coevorden, and A. Lagendijk, “Point scatterers for classical waves,” Rev. Mod. Phys. 70(2), 447–466 (1998).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens,” Waves in Random and Complex Media 21(4), 614–627 (2011).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “Revisiting the wire medium: an ideal resonant metalens,” Waves in Random and Complex Media 21(4), 591–613 (2011).

[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “Dispersion in media containing resonant inclusions: where does it come from,” 2012 Conference on, Lasers and Electro-Optics (2012).

[Crossref]

The super-resonance is mathematically that the matrix B=I−k2α(ω)RgG0lens→lens(ω)in Eq. (3) is strongly ill-posed, which means that the ratio σ1σN(i.e., the condition number) is very large, whereσ1is the first singular value (the maximum) of the matrix, and σNis the final (the minimum) singular value.

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer Press 2010).

L. Rayleigh,“On pin-hole photography,” The London, Edinburg and Dublin philosophical magazine and journal of science, 5, 31 (1891).

http://en.wikipedia.org/wiki/Near-field_scanning_optical_microscope