Abstract

Effects of optical feedback on period-one nonlinear dynamics of an optically injected semiconductor laser are numerically investigated. The optical feedback can suppress the period-one dynamics and excite other more complex dynamics if the feedback level is high except for extremely short feedback delay times. Within the range of the period-one dynamics, however, the optical feedback can stabilize the period-one dynamics in such a manner that significant reduction of microwave linewidth and phase noise is achieved, up to more than two orders of magnitude. A high feedback level and/or a long feedback delay time are generally preferred for such microwave stabilization. However, considerably enhanced microwave linewidth and phase noise happen periodically at certain feedback delay times, which is strongly related to the behavior of locking between the period-one microwave oscillation and the feedback loop modes. The extent of these enhancements reduces if the feedback level is high. While the microwave frequency only slightly changes with the feedback level, it red-shifts with the feedback delay time before an abrupt blue-shift occurs periodically. With the presence of the laser intrinsic noise, frequency jitters occur around the feedback delay times leading to the abrupt blue-shifts, ranging from the order of 0.1 GHz to the order of 1 GHz.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
    [CrossRef]
  2. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
    [CrossRef]
  3. S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
    [CrossRef]
  4. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
    [CrossRef] [PubMed]
  5. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
    [CrossRef]
  6. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
    [CrossRef]
  7. S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
    [CrossRef]
  8. S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
    [CrossRef] [PubMed]
  9. C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
    [CrossRef]
  10. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
    [CrossRef] [PubMed]
  11. Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
    [CrossRef] [PubMed]
  12. Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
    [CrossRef] [PubMed]
  13. T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
    [CrossRef]
  14. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
    [CrossRef]
  15. M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
    [CrossRef]
  16. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
    [CrossRef]
  17. Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
    [CrossRef]
  18. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20, 13390–13401 (2012).
    [CrossRef] [PubMed]
  19. J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38, 344–346 (2013).
    [CrossRef] [PubMed]
  20. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
    [CrossRef]
  21. A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21, 10772–10778 (2013).
    [CrossRef] [PubMed]
  22. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
    [CrossRef]
  23. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
    [CrossRef]
  24. C. T. Lin, P. T. Shih, W. J. Jiang, J. Chen, P. C. Peng, and S. Chi, “A continuously tunable and filterless optical millimeter-wave generation via frequency octupling,” Opt. Express 17, 19749–19756 (2009).
    [CrossRef] [PubMed]
  25. A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
    [CrossRef]
  26. C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34, 3821–3823 (2009).
    [CrossRef] [PubMed]
  27. V. Annovazzi Lodi, A. Scir, M. Sorel, and S. Donati, “Dynamical behavior and locking of semiconductor laser subjected to injection,” IEEE J. Quantum Electron. 34, 2350–2356 (1998).
    [CrossRef]
  28. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
    [CrossRef]
  29. S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
    [CrossRef]
  30. T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
    [CrossRef]
  31. J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
    [CrossRef]
  32. T. B. Simpson and J. M. Liu, “Spontaneous emission, nonlinear optical coupling, and noise in laser diodes,” Opt. Commun. 112, 43–47 (1994).
    [CrossRef]
  33. S. K. Hwang, J. B. Gao, and J. M. Liu, “Noise-induced chaos in an optically injected semiconductor laser model,” Phys. Rev. E 61, 5162–5170 (2000).
    [CrossRef]
  34. S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
    [CrossRef]
  35. T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
    [CrossRef]
  36. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
    [CrossRef]
  37. O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photon. Technol. Lett. 5, 1264–1266 (1993).
    [CrossRef]
  38. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
    [CrossRef]
  39. R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
    [CrossRef]
  40. C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014).
    [CrossRef]

2014 (1)

C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014).
[CrossRef]

2013 (5)

2012 (3)

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20, 13390–13401 (2012).
[CrossRef] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[CrossRef]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
[CrossRef]

2011 (4)

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[CrossRef]

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

2010 (3)

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[CrossRef]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[CrossRef]

2009 (3)

2007 (1)

2006 (2)

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[CrossRef] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

2005 (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

2004 (3)

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[CrossRef]

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

2002 (1)

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

2000 (1)

S. K. Hwang, J. B. Gao, and J. M. Liu, “Noise-induced chaos in an optically injected semiconductor laser model,” Phys. Rev. E 61, 5162–5170 (2000).
[CrossRef]

1999 (1)

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[CrossRef]

1998 (1)

V. Annovazzi Lodi, A. Scir, M. Sorel, and S. Donati, “Dynamical behavior and locking of semiconductor laser subjected to injection,” IEEE J. Quantum Electron. 34, 2350–2356 (1998).
[CrossRef]

1997 (2)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
[CrossRef]

1996 (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[CrossRef]

1995 (1)

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[CrossRef]

1994 (2)

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

T. B. Simpson and J. M. Liu, “Spontaneous emission, nonlinear optical coupling, and noise in laser diodes,” Opt. Commun. 112, 43–47 (1994).
[CrossRef]

1993 (2)

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photon. Technol. Lett. 5, 1264–1266 (1993).
[CrossRef]

1992 (1)

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

Accard, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Adams, M. J.

Akrout, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

AlMulla, M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

Anandarajah, P.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

Annovazzi Lodi, V.

V. Annovazzi Lodi, A. Scir, M. Sorel, and S. Donati, “Dynamical behavior and locking of semiconductor laser subjected to injection,” IEEE J. Quantum Electron. 34, 2350–2356 (1998).
[CrossRef]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

Barry, L. P.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

Broberg, B.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

Bruun, M.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

Chan, S. C.

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38, 344–346 (2013).
[CrossRef] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[CrossRef]

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[CrossRef]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[CrossRef]

C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34, 3821–3823 (2009).
[CrossRef] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[CrossRef] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[CrossRef] [PubMed]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[CrossRef]

Chen, H. F.

Chen, J.

Chi, S.

Christensen, E. L.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

Chu, C. H.

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
[CrossRef] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[CrossRef]

Cui, C.

Doft, F.

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[CrossRef]

Donati, S.

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
[CrossRef]

V. Annovazzi Lodi, A. Scir, M. Sorel, and S. Donati, “Dynamical behavior and locking of semiconductor laser subjected to injection,” IEEE J. Quantum Electron. 34, 2350–2356 (1998).
[CrossRef]

Fu, X.

Gao, J. B.

S. K. Hwang, J. B. Gao, and J. M. Liu, “Noise-induced chaos in an optically injected semiconductor laser model,” Phys. Rev. E 61, 5162–5170 (2000).
[CrossRef]

Gavrielides, A.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[CrossRef]

Gliese, U.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

Grillot, F.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

Henning, I. D.

Hsieh, S. C.

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[CrossRef]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Hung, Y. H.

Hurtado, A.

Hwang, S. K.

Y. H. Hung, C. H. Chu, and S. K. Hwang, “Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links,” Opt. Lett. 38, 1482–1484 (2013).
[CrossRef] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38, 3355–3358 (2013).
[CrossRef] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[CrossRef]

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
[CrossRef]

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[CrossRef]

S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
[CrossRef] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[CrossRef] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[CrossRef] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

S. K. Hwang, J. B. Gao, and J. M. Liu, “Noise-induced chaos in an optically injected semiconductor laser model,” Phys. Rev. E 61, 5162–5170 (2000).
[CrossRef]

Jiang, W. J.

Kapsalis, A.

C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014).
[CrossRef]

Kaszubowska, A.

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[CrossRef]

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Lau, K. Y.

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photon. Technol. Lett. 5, 1264–1266 (1993).
[CrossRef]

Lelarge, F.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Lester, L. F.

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser,” Opt. Express 21, 10772–10778 (2013).
[CrossRef] [PubMed]

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

Li, C.Y.

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[CrossRef]

Li, Y.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

Liang, D. H.

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

Lin, C. T.

Lin, C. Y.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

S. K. Hwang, H. F. Chen, and C. Y. Lin, “All-optical frequency conversion using nonlinear dynamics of semiconductor lasers,” Opt. Lett. 34, 812–814 (2009).
[CrossRef] [PubMed]

Lin, F. Y.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

Lin, S. L.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[CrossRef]

Lindgren, S.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

Liu, J. M.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[CrossRef]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15, 14921–14935 (2007).
[CrossRef] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006).
[CrossRef] [PubMed]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

S. K. Hwang, J. B. Gao, and J. M. Liu, “Noise-induced chaos in an optically injected semiconductor laser model,” Phys. Rev. E 61, 5162–5170 (2000).
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[CrossRef]

T. B. Simpson and J. M. Liu, “Spontaneous emission, nonlinear optical coupling, and noise in laser diodes,” Opt. Commun. 112, 43–47 (1994).
[CrossRef]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[CrossRef]

Martinez, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Mee, J.

Merghem, K.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Mesaritakis, C.

C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

Naderi, N. A.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

Nami, M.

Nielsen, T. N.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

Peng, P. C.

Pochet, M.

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[CrossRef]

Qi, X. Q.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[CrossRef]

Quirce, A.

Ramdane, A.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Rosales, R.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Scir, A.

V. Annovazzi Lodi, A. Scir, M. Sorel, and S. Donati, “Dynamical behavior and locking of semiconductor laser subjected to injection,” IEEE J. Quantum Electron. 34, 2350–2356 (1998).
[CrossRef]

Shih, P. T.

Simos, C.

C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014).
[CrossRef]

Simos, H.

C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014).
[CrossRef]

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[CrossRef]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

T. B. Simpson and J. M. Liu, “Spontaneous emission, nonlinear optical coupling, and noise in laser diodes,” Opt. Commun. 112, 43–47 (1994).
[CrossRef]

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

Solgaard, O.

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photon. Technol. Lett. 5, 1264–1266 (1993).
[CrossRef]

Sorel, M.

V. Annovazzi Lodi, A. Scir, M. Sorel, and S. Donati, “Dynamical behavior and locking of semiconductor laser subjected to injection,” IEEE J. Quantum Electron. 34, 2350–2356 (1998).
[CrossRef]

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

Syvridis, D.

C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014).
[CrossRef]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Tourrence, J. P.

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

Valle, A.

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[CrossRef]

Yuan, Y. S.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

Zhuang, J. P.

Appl. Phys. Lett. (2)

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89, 061120 (2006).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

IEEE J. Quantum Electron. (6)

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30, 957–965 (1994).
[CrossRef]

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39, 1196–1204 (2003).
[CrossRef]

S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010).
[CrossRef]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48, 1389–1396 (2012).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32, 1141–1149 (1996).
[CrossRef]

V. Annovazzi Lodi, A. Scir, M. Sorel, and S. Donati, “Dynamical behavior and locking of semiconductor laser subjected to injection,” IEEE J. Quantum Electron. 34, 2350–2356 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (5)

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10, 1025–1032 (2004).
[CrossRef]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically-injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19, 1500807 (2013).
[CrossRef]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10, 974–981 (2004).
[CrossRef]

R. Rosales, K. Merghem, A. Martinez, A. Akrout, J. P. Tourrence, A. Accard, F. Lelarge, and A. Ramdane, “InAs/InP quantum-dot passively mode-locked lasers for 1.55-μ applications,” IEEE J. Sel. Top. Quantum Electron. 17, 1292–1301 (2011).
[CrossRef]

IEEE Photon. J. (1)

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

M. Pochet, N. A. Naderi, Y. Li, V. Kovanis, and L. F. Lester, Tunable photonic oscillators using optically injected quantum-dash diode lasers,” IEEE Photon. Technol. Lett. 22, 763–765 (2010).
[CrossRef]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photon. Technol. Lett. 11, 1476–1478 (1999).
[CrossRef]

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz Microwave Carriers,” IEEE Photon. Technol. Lett. 4, 936–938 (1992).
[CrossRef]

A. Kaszubowska, L. P. Barry, and P. Anandarajah, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599–1601 (2002).
[CrossRef]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett. 16, 972–974 (2004).
[CrossRef]

T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995).
[CrossRef]

O. Solgaard and K. Y. Lau, “Optical feedback stabilization of the intensity oscillations in ultrahigh-frequency passively modelocked monolithic quantum-well lasers,” IEEE Photon. Technol. Lett. 5, 1264–1266 (1993).
[CrossRef]

J. Appl. Phys. (1)

T. B. Simpson and J. M. Liu, “Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers,” J. Appl. Phys. 73, 2587–2589 (1993).
[CrossRef]

Opt. Commun. (3)

C. Simos, H. Simos, C. Mesaritakis, A. Kapsalis, and D. Syvridis, “Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback,” Opt. Commun. 313, 248–255 (2014).
[CrossRef]

T. B. Simpson and J. M. Liu, “Spontaneous emission, nonlinear optical coupling, and noise in laser diodes,” Opt. Commun. 112, 43–47 (1994).
[CrossRef]

S. K. Hwang, S. C. Chan, S. C. Hsieh, and C.Y. Li, “Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers,” Opt. Commun. 284, 3581–3589 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[CrossRef]

Phys. Rev. E (1)

S. K. Hwang, J. B. Gao, and J. M. Liu, “Noise-induced chaos in an optically injected semiconductor laser model,” Phys. Rev. E 61, 5162–5170 (2000).
[CrossRef]

Prog. Quantum Electron. (1)

S. Donati and S. K. Hwang, “Chaos and high-level dynamics in coupled lasers and their applications,” Prog. Quantum Electron. 36, 293–341 (2012).
[CrossRef]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, 765–784 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a semiconductor laser subject to optical injection and optical feedback. ML, master laser; VOA, variable optical attenuator; PC, polarization controller; OC, optical coupler; C, optical circulator; SL, slave laser; VODL, variable optical delay line; PD, photodetector; MSA, microwave spectrum analyzer; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Optical spectra (left column) and microwave spectra (right column) of the slave laser subject to both optical injection at (ξi, fi) = (0.4, 40 GHz) and optical feedback at (ξf,τf) = (0, 0 ns) for (a-i)(a-ii), (0.005, 0.21 ns) for (b-i)(b-ii), (0.005, 0.28 ns) for (c-i)(c-ii), and (0.027, 0.21 ns) for (d-i)(d-ii), respectively. Red curves, no laser noise is considered; Gray curves, laser noise is considered. The x axes of the optical spectra are relative to the free-running frequency of the slave laser. The figure shown in each inset is an enlargement of each corresponding microwave spectrum in a linear scale with a Lorentzian fitting curve (blue curve).

Fig. 3
Fig. 3

Dynamical mappings of the slave laser subject to both optical injection and optical feedback in terms of ξf and τf at (a) (ξi, fi) = (0.4, 40 GHz) and (b) (ξi, fi) = (0.2, 40 GHz), respectively. P1, period-one dynamics; QP, quasi-periodic dynamics; C, chaos and other instabilities.

Fig. 4
Fig. 4

(a)(c) Microwave frequency f0 in terms of ξf at τf = 0.21 ns and in terms of τf at ξf = 0.005. (b)(d) Mappings of microwave frequency f0 in terms of ξf and τf. Left column, (ξi, fi) = (0.4, 40 GHz); Right column, (ξi, fi) = (0.2, 40 GHz).

Fig. 5
Fig. 5

Microwave frequency blue-shift Δf0 (red circles) and feedback loop frequency fl (black curves) in terms of τf at ξf =0.005 for (a) (ξi, fi) = (0.4, 40 GHz) and (b) (ξi, fi) = (0.2, 40 GHz), respectively.

Fig. 6
Fig. 6

(a) Reciprocal of T1 (black triangles and squares) and frequency difference between the lower P1 oscillation sideband and the free-running slave laser (red curves) in terms of ξi at fi = 40 GHz and in terms of fi at ξi = 0.4. (b) Reciprocal of T2 (black triangles and squares) and frequency difference between the optical injection signal and the free-running slave laser (red curves) in terms of ξi at fi = 40 GHz and in terms of fi at ξi = 0.4.

Fig. 7
Fig. 7

(a)(b) Enlargement of Figs. 4(a) and 4(c), respectively, for microwave frequency f0 in terms of τf at ξf = 0.005 when the laser noise is considered.

Fig. 8
Fig. 8

(a)(d) Microwave linewdith Δν and (b)(f) phase noise variance in terms of ξf at τf = 0.21 ns and in terms of τf at ξf =0.005. (c)(g) Mappings of phase noise variance in terms of ξf and τf, where its log-scaled values are presented. Left column, (ξi, fi) = (0.4, 40 GHz); Right column, (ξi, fi) = (0.2, 40 GHz).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d a d t = 1 2 [ γ c γ n γ s J ˜ n ˜ γ p ( 2 a + a 2 ) ] ( 1 + a ) + F a + ξ i γ c cos ( Ω i t + ϕ ) + ξ f γ c [ 1 + a ( t τ f ) ] cos [ ϕ ( t τ f ) ϕ ( t ) + θ ]
d ϕ d t = b 2 [ γ c γ n γ s J ˜ n ˜ γ p ( 2 a + a 2 ) ] + F ϕ 1 + a ξ i γ c 1 + a sin ( Ω i t + ϕ ) + ξ f γ c 1 + a ( t τ f ) 1 + a ( t ) sin [ ϕ ( t τ f ) ϕ ( t ) + θ ]
d n ˜ d t = γ s n ˜ γ n ( 1 + a ) 2 n ˜ γ s J ˜ ( 2 a + a 2 ) + γ s γ p γ c J ˜ ( 2 a + a 2 ) ( 1 + a ) 2

Metrics