Abstract

An asymmetric plasmonic slot waveguide (APSW) for efficient phase-matched third harmonic generation (THG) is proposed and demonstrated theoretically. Nonlinear organic material DDMEBT polymer is integrated into the bottom of the metallic slot, while silicon is used to fill the top of the slot. We introduce the rigorous coupled-mode equations of THG in the lossy APSW and apply them to optimize the waveguide geometry. Taking advantage of the surface plasmon polaritons (SPPs), the electric fields can be tightly confined in the metallic slot region and the nonlinear effect is greatly enhanced accordingly. Then, we investigate the relationships between THG efficiency and parameters such as slot width and height, phase matching condition (PMC), modal overlap related nonlinear parameter, figure-of-merit, pump power and detuning. With the proposed asymmetric waveguide, we demonstrate a high THG conversion efficiency of 4.88 × 10−6 with a pump power of 1 W and a detuning constant of −36 m−1 at a waveguide length of 10.65 𝜇m.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ma and S. Fathpour, “Pump-to-Stokes relative intensity noise transfer and analytical modeling of mid-infrared silicon Raman lasers,” Opt. Express 20(16), 17962–17972 (2012).
    [CrossRef] [PubMed]
  2. Z. Wang, H. Liu, N. Huang, Q. Sun, and X. Li, “Mid-infrared Raman amplification and wavlength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16(1), 015206(2014).
    [CrossRef]
  3. R. K. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
    [CrossRef] [PubMed]
  4. C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
    [CrossRef]
  5. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
    [CrossRef] [PubMed]
  6. A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
    [CrossRef]
  7. N. S. Prasad, D. D. Smith, and J. R. Magee, “Data communication in mid-IR using a solid-state laser pumped optical parametric oscillator,” Proc. SPIE 4821, 214–224 (2002).
    [CrossRef]
  8. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [CrossRef]
  9. H. Junginger, H. Puell, H. Scheingraber, and C. Vidal, “Resonant third-harmonic generation in a low-loss medium,” IEEE J. Quantum Electron. 16(10), 1132–1137 (1980).
    [CrossRef]
  10. S. B. Hasan, C. Rockstuhl, T. Pertsch, and F. Lederer, “Second-order nonlinear frequency conversion processes in plasmonic slot waveguides,” J. Opt. Soc. Am. B 29(7), 1606–1611 (2012).
    [CrossRef]
  11. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [CrossRef]
  12. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [CrossRef] [PubMed]
  14. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
    [CrossRef]
  15. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  16. M. T. Beels, M. S. Fleischman, I. Biaggio, B. Breiten, M. Jordan, and F. Diederich, “Compact TCBD based molecules and supramolecular assemblies for third-order nonlinear optics,” Opt. Mater. Express 2(3), 294–303 (2012).
    [CrossRef]
  17. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express 20(8), 8503–8511 (2012).
    [CrossRef] [PubMed]
  18. K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett. 37(3), 289–291 (2012).
    [CrossRef] [PubMed]
  19. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005).
    [CrossRef] [PubMed]
  20. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50(20), 3428–3434 (2011).
    [CrossRef] [PubMed]
  21. A. A. Sukhorukov, A. S. Solntsev, S. S. Kruk, D. N. Neshev, and Y. S. Kivshar, “Nonlinear coupled-mode theory for periodic plasmonic waveguides and meramaterials with loss and gain,” Opt. Lett. 39(3), 462–465 (2014).
  22. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express 17(16), 13502–13515 (2009).
    [CrossRef] [PubMed]
  23. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
    [CrossRef]
  24. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
    [CrossRef] [PubMed]
  25. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
    [CrossRef]
  26. K. Tarnwski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE. J. of Quant. Electro. 47(5), 622–629 (2011).
    [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  28. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21(17), 1336–1338 (1996).
    [CrossRef] [PubMed]
  29. A. J. Henderson, P. M. Roper, L. A. Borschowa, and R. D. Mead, “Stable, continuously tunable operation of a diode-pumped doubly resonant optical parametric oscillator,” Opt. Lett. 25(17), 1264–1266 (2000).
    [CrossRef] [PubMed]
  30. M. E. Klein, D. H. Lee, J. P. Meyn, K. J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24(16), 1142–1144 (1999).
    [CrossRef] [PubMed]
  31. M. E. Klein, C. K. Laue, D. H. Lee, K. J. Boller, and R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25(7), 490–492 (2000).
    [CrossRef] [PubMed]
  32. F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
    [CrossRef]
  33. M. M. J. W. van Herpen, S. Te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren, “Wide single-mode tuning of a 3.0- 3.8-mum, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27(8), 640–642 (2002).
    [CrossRef] [PubMed]
  34. M. M. J. W. van Herpen, S. Li, S. E. Bisson, S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2–3), 329–333 (2002).
    [CrossRef]

2014 (2)

Z. Wang, H. Liu, N. Huang, Q. Sun, and X. Li, “Mid-infrared Raman amplification and wavlength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16(1), 015206(2014).
[CrossRef]

A. A. Sukhorukov, A. S. Solntsev, S. S. Kruk, D. N. Neshev, and Y. S. Kivshar, “Nonlinear coupled-mode theory for periodic plasmonic waveguides and meramaterials with loss and gain,” Opt. Lett. 39(3), 462–465 (2014).

2012 (7)

2011 (4)

2010 (2)

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[CrossRef] [PubMed]

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

2009 (1)

2008 (1)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

2007 (2)

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

2005 (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (3)

N. S. Prasad, D. D. Smith, and J. R. Magee, “Data communication in mid-IR using a solid-state laser pumped optical parametric oscillator,” Proc. SPIE 4821, 214–224 (2002).
[CrossRef]

M. M. J. W. van Herpen, S. Te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren, “Wide single-mode tuning of a 3.0- 3.8-mum, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27(8), 640–642 (2002).
[CrossRef] [PubMed]

M. M. J. W. van Herpen, S. Li, S. E. Bisson, S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2–3), 329–333 (2002).
[CrossRef]

2000 (2)

1999 (1)

1998 (1)

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

1996 (1)

1980 (1)

H. Junginger, H. Puell, H. Scheingraber, and C. Vidal, “Resonant third-harmonic generation in a low-loss medium,” IEEE J. Quantum Electron. 16(10), 1132–1137 (1980).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Agrawal, G. P.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Alexander, J. I.

Almeida, V. R.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Barrios, C. A.

Beels, M. T.

Bencheikh, K.

Biaggio, I.

Bisson, S. E.

M. M. J. W. van Herpen, S. Te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren, “Wide single-mode tuning of a 3.0- 3.8-mum, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27(8), 640–642 (2002).
[CrossRef] [PubMed]

M. M. J. W. van Herpen, S. Li, S. E. Bisson, S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2–3), 329–333 (2002).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Boller, K. J.

Boroumand, J.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Borschowa, L. A.

Bosenberg, W. R.

Boyd, R. W.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Brambilla, G.

Breiten, B.

Broderick, N. G. R.

Buchwald, W. R.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Byer, R. L.

Chen, J.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cleary, J. W.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Codemard, C. A.

Corcoran, B.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Diederich, F.

Ding, M.

Drobshoff, A.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Eggleton, B. J.

Fan, S.

Farr, W.

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

Fathpour, S.

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[CrossRef]

Fejer, M. M.

Figueiredo, P.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Finot, C.

K. Tarnwski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE. J. of Quant. Electro. 47(5), 622–629 (2011).
[CrossRef]

Fleischman, M. S.

Foster, M. A.

Fredricksen, C. J.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Gaeta, A. L.

Gooijer, F.

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Grillet, C.

Grubsky, V.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Harren, F. J. M.

M. M. J. W. van Herpen, S. Li, S. E. Bisson, S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2–3), 329–333 (2002).
[CrossRef]

M. M. J. W. van Herpen, S. Te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren, “Wide single-mode tuning of a 3.0- 3.8-mum, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27(8), 640–642 (2002).
[CrossRef] [PubMed]

Hasan, S. B.

Hecker, A.

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

Henderson, A. J.

Hill, C.

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

Hong, Z.

Huang, N.

Z. Wang, H. Liu, N. Huang, Q. Sun, and X. Li, “Mid-infrared Raman amplification and wavlength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16(1), 015206(2014).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jordan, M.

Jung, Y.

Junginger, H.

H. Junginger, H. Puell, H. Scheingraber, and C. Vidal, “Resonant third-harmonic generation in a low-loss medium,” IEEE J. Quantum Electron. 16(10), 1132–1137 (1980).
[CrossRef]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[CrossRef]

Keo, S.

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

Khalilzadeh-Rezaie, F.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Kibler, B.

K. Tarnwski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE. J. of Quant. Electro. 47(5), 622–629 (2011).
[CrossRef]

Kivshar, Y. S.

Klein, M. E.

Krabshuis, G.

Krauss, T. F.

Kruk, S. S.

Kühnemann, F.

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

Lau, R. K.

Laue, C. K.

Lederer, F.

Lee, D. H.

Lee, T.

Levenson, J. A.

Li, S.

M. M. J. W. van Herpen, S. Li, S. E. Bisson, S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2–3), 329–333 (2002).
[CrossRef]

Li, X.

Z. Wang, H. Liu, N. Huang, Q. Sun, and X. Li, “Mid-infrared Raman amplification and wavlength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16(1), 015206(2014).
[CrossRef]

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50(20), 3428–3434 (2011).
[CrossRef] [PubMed]

Lin, Q.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007).
[CrossRef] [PubMed]

Lipson, M.

Liu, H.

Z. Wang, H. Liu, N. Huang, Q. Sun, and X. Li, “Mid-infrared Raman amplification and wavlength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16(1), 015206(2014).
[CrossRef]

Liu, H. C.

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

Liu, Y.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Ma, J.

Magee, J. R.

N. S. Prasad, D. D. Smith, and J. R. Magee, “Data communication in mid-IR using a solid-state laser pumped optical parametric oscillator,” Proc. SPIE 4821, 214–224 (2002).
[CrossRef]

Martis, A. A. E.

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Mead, R. D.

Medhi, G.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Mélin, G.

Ménard, M.

Meyn, J. P.

Mlynek, J.

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

Monat, C.

Moss, D. J.

Myers, L. E.

Nath, J.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Neshev, D. N.

O’Faolain, L.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Okawachi, Y.

Painter, O. J.

Peale, R. E.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Pelusi, M.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Pertsch, T.

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[CrossRef]

Prasad, N. S.

N. S. Prasad, D. D. Smith, and J. R. Magee, “Data communication in mid-IR using a solid-state laser pumped optical parametric oscillator,” Proc. SPIE 4821, 214–224 (2002).
[CrossRef]

Puell, H.

H. Junginger, H. Puell, H. Scheingraber, and C. Vidal, “Resonant third-harmonic generation in a low-loss medium,” IEEE J. Quantum Electron. 16(10), 1132–1137 (1980).
[CrossRef]

Rezadad, I.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Richard, S.

Rockstuhl, C.

Roper, P. M.

Ruan, Z.

Salem, R.

Savchenko, A.

Scheider, K.

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

Scheingraber, H.

H. Junginger, H. Puell, H. Scheingraber, and C. Vidal, “Resonant third-harmonic generation in a low-loss medium,” IEEE J. Quantum Electron. 16(10), 1132–1137 (1980).
[CrossRef]

Schiller, S.

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

Shahzad, M.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Smith, D. D.

N. S. Prasad, D. D. Smith, and J. R. Magee, “Data communication in mid-IR using a solid-state laser pumped optical parametric oscillator,” Proc. SPIE 4821, 214–224 (2002).
[CrossRef]

Smith, E.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Soibel, A.

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

Solntsev, A. S.

Stockman, M. I.

Sukhorukov, A. A.

Sun, Q.

Z. Wang, H. Liu, N. Huang, Q. Sun, and X. Li, “Mid-infrared Raman amplification and wavlength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16(1), 015206(2014).
[CrossRef]

Sun, X.

Tarnwski, K.

K. Tarnwski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE. J. of Quant. Electro. 47(5), 622–629 (2011).
[CrossRef]

Te Lintel Hekkert, S.

M. M. J. W. van Herpen, S. Te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren, “Wide single-mode tuning of a 3.0- 3.8-mum, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27(8), 640–642 (2002).
[CrossRef] [PubMed]

M. M. J. W. van Herpen, S. Li, S. E. Bisson, S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2–3), 329–333 (2002).
[CrossRef]

Tsang, H. K.

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Turner-Foster, A. C.

Urban, W.

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

Urbanczyk, W.

K. Tarnwski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE. J. of Quant. Electro. 47(5), 622–629 (2011).
[CrossRef]

van Herpen, M. M. J. W.

M. M. J. W. van Herpen, S. Te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren, “Wide single-mode tuning of a 3.0- 3.8-mum, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27(8), 640–642 (2002).
[CrossRef] [PubMed]

M. M. J. W. van Herpen, S. Li, S. E. Bisson, S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2–3), 329–333 (2002).
[CrossRef]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Veronis, G.

Vidal, C.

H. Junginger, H. Puell, H. Scheingraber, and C. Vidal, “Resonant third-harmonic generation in a low-loss medium,” IEEE J. Quantum Electron. 16(10), 1132–1137 (1980).
[CrossRef]

Vodopyanov, K. L.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Wallenstein, R.

Wang, Z.

Z. Wang, H. Liu, N. Huang, Q. Sun, and X. Li, “Mid-infrared Raman amplification and wavlength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16(1), 015206(2014).
[CrossRef]

White, T. P.

Wright, M.

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

Xu, Q.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Yang, R. Q.

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

Yesiltas, M.

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[CrossRef]

Zhang, J.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[CrossRef]

Zhou, L.

Appl. Opt. (1)

Appl. Phys. B (2)

F. Kühnemann, K. Scheider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, “Photoacoustic trace-gas detection using a cw single-frequency parametric oscillator,” Appl. Phys. B 66(6), 741–745 (1998).
[CrossRef]

M. M. J. W. van Herpen, S. Li, S. E. Bisson, S. te Lintel Hekkert, and F. J. M. Harren, “Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,” Appl. Phys. B 75(2–3), 329–333 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett. 91(2), 021111 (2007).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Junginger, H. Puell, H. Scheingraber, and C. Vidal, “Resonant third-harmonic generation in a low-loss medium,” IEEE J. Quantum Electron. 16(10), 1132–1137 (1980).
[CrossRef]

IEEE. J. of Quant. Electro. (1)

K. Tarnwski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE. J. of Quant. Electro. 47(5), 622–629 (2011).
[CrossRef]

J. Opt. (1)

Z. Wang, H. Liu, N. Huang, Q. Sun, and X. Li, “Mid-infrared Raman amplification and wavlength conversion in dispersion engineered silicon-on-sapphire waveguides,” J. Opt. 16(1), 015206(2014).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[CrossRef]

Opt. Express (7)

Opt. Lett. (9)

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21(17), 1336–1338 (1996).
[CrossRef] [PubMed]

A. J. Henderson, P. M. Roper, L. A. Borschowa, and R. D. Mead, “Stable, continuously tunable operation of a diode-pumped doubly resonant optical parametric oscillator,” Opt. Lett. 25(17), 1264–1266 (2000).
[CrossRef] [PubMed]

M. E. Klein, D. H. Lee, J. P. Meyn, K. J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24(16), 1142–1144 (1999).
[CrossRef] [PubMed]

M. E. Klein, C. K. Laue, D. H. Lee, K. J. Boller, and R. Wallenstein, “Diode-pumped singly resonant continuous-wave optical parametric oscillator with wide continuous tuning of the near-infrared idler wave,” Opt. Lett. 25(7), 490–492 (2000).
[CrossRef] [PubMed]

M. M. J. W. van Herpen, S. Te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren, “Wide single-mode tuning of a 3.0- 3.8-mum, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27(8), 640–642 (2002).
[CrossRef] [PubMed]

K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett. 37(3), 289–291 (2012).
[CrossRef] [PubMed]

A. A. Sukhorukov, A. S. Solntsev, S. S. Kruk, D. N. Neshev, and Y. S. Kivshar, “Nonlinear coupled-mode theory for periodic plasmonic waveguides and meramaterials with loss and gain,” Opt. Lett. 39(3), 462–465 (2014).

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

R. K. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Proc. SPIE (3)

C. J. Fredricksen, J. W. Cleary, W. R. Buchwald, P. Figueiredo, F. Khalilzadeh-Rezaie, G. Medhi, I. Rezadad, M. Shahzad, M. Yesiltas, J. Nath, J. Boroumand, E. Smith, and R. E. Peale, “Planar integrated plasmonic mid-IR spectrometer,” Proc. SPIE 8353, 835321 (2012).
[CrossRef]

A. Soibel, M. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang, and H. C. Liu, “Free space optical communication utilizing mid-infrared interband cascade laser,” Proc. SPIE 7587, 75870S (2010).
[CrossRef]

N. S. Prasad, D. D. Smith, and J. R. Magee, “Data communication in mid-IR using a solid-state laser pumped optical parametric oscillator,” Proc. SPIE 4821, 214–224 (2002).
[CrossRef]

Semicond. Sci. Technol. (1)

H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol. 23(6), 064007 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross-section view of the proposed asymmetric plasmonic slot waveguide (APSW) with DDMEBT polymer and silicon fulfilling the bottom and top of the slot, respectively.

Fig. 2
Fig. 2

Design of the waveguide geometry satisfying the PMC. Effective indices of the guided modes versus (a) the DDMEBT slot height ho with certain slot width w = 40 nm and silicon slot height hs = 100 nm, (b) the silicon slot height hs with certain DDMEBT slot height ho = 500 nm. Note that ‘0’ and ‘2’ stand for the 0-th and 2-nd waveguide modes, respectively.

Fig. 3
Fig. 3

Ex distributions of (a) 0-th mode at FF, (b) 2-nd mode at THF at the optimized phase-matched point (w = 40 nm, ho = 500 nm, hs = 207 nm); Ex distributions on the centerline along (c) x direction, (d) y direction. ‘h’ in (d) stands for the slot height, i.e. h = ho + hs.

Fig. 4
Fig. 4

(a) DDMEBT polymer slot height and silicon slot height, (b) overlap integral related Re(I6), and (c) FOM of FF and THF versus the metal plasmonic slot width at different PMCs

Fig. 5
Fig. 5

Conversion efficiency of THG and the corresponding waveguide length Lp as a function of the slot width at different PMCs for a fixed pump power of 1 W.

Fig. 6
Fig. 6

(a) Contour map of conversion efficiency in MPSW with different δβ and (b) optical powers of FF and THF along the propagation distance with δβ = −36 m−1 with a fixed pump power of 1 W; (c) conversion and the corresponding detuning versus the pump power.

Fig. 7
Fig. 7

(a) Re(I6), (b) FOMs, and (c) conversion efficiency as a function of the slot width.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

× E (r,t)=μ H (r,t) t
× H (r,t)=ε E (r,t) t + P NL t
E ( r ,t)= 1 2 j A ˜ j (z) Z 0 1/2 F j ( r ) exp[i( β j z ω j t)]+c.c.
H ( r ,t)= 1 2 j A ˜ j (z) Z 0 -1 /2 G j ( r ) exp[i( β j z ω j t)]+c.c.
d A ˜ j dz = Z 0 1/2 2 A NL exp[i( β j z ω j t)] F j * P NL t t dxdy
P NL = ε 0 χ (3) ( r )( E ( r ,t) E ( r ,t)) E ( r ,t)
A j = A ˜ j exp( α j z 2 )
P NL ' = ε 0 χ (3) ( r )( E ' ( r ,t) E ' ( r ,t)) E ' ( r ,t)
d A ˜ j dz = Z 0 1/2 2 exp( α j z 2 ) A NL exp[i( β j z ω j t)] F j * P NL ' t t dxdy
A ˜ 1 z =i[( I 1 | A 1 | 2 + I 2 | A 3 | 2 ) A 1 + I 3 ( A 1 * ) 2 A 3 e iδβz ]exp( α 1 z 2 )
A ˜ 3 z =i[(3 I 4 | A 1 | 2 + I 5 | A 3 | 2 ) A 3 + I 6 * ( A 1 ) 3 e -iδβz ]exp( α 3 z 2 )
I 1 = 1 12 A NL (2 | F 1 | 4 + | F 1 2 | 2 ) n 0 2 ( ω 1 , r )[ k 1 n 2 ( r )]dS
I 2 = 1 6 A NL ( | F 1 | 2 | F 3 | 2 + | F 1 F 3 | 2 + | F 1 F 3 * | 2 ) n 0 2 ( ω 1 , r )[ k 1 n 2 ( r )]dS
I 3 = 1 4 A NL ( F 1 * F 3 ) ( F 1 * F 1 * ) n 0 2 ( ω 1 , r )[ k 1 n 2 ( r )]dS
I 4 = 1 6 A NL ( | F 1 | 2 | F 3 | 2 + | F 1 F 3 | 2 + | F 1 F 3 * | 2 ) n 0 2 ( ω 3 , r )[ k 1 n 2 ( r )+i α 2 ( r ) 2 ]dS
I 5 = 1 4 A NL (2 | F 3 | 4 + | F 3 2 | 2 ) n 0 2 ( ω 3 , r )[ k 1 n 2 ( r )+i α 2 ( r ) 2 ]dS
I 6 = 1 4 A NL ( F 1 * F 3 ) ( F 1 * F 1 * ) n 0 2 ( ω 3 , r )[ k 1 n 2 ( r )+i α 2 ( r ) 2 ]dS
A 1 z = α 1 2 A 1 +i[( I 1 | A 1 | 2 + I 2 | A 3 | 2 ) A 1 + I 3 ( A 1 * ) 2 A 3 e iδβz ]
A 3 z = α 3 2 A 3 +i[(3 I 4 | A 1 | 2 + I 5 | A 3 | 2 ) A 3 + I 6 * ( A 1 ) 3 e -iδβz ]
d P 1 dz = α 1 P 1 2 I 3 P 1 3 2 P 3 1 2 sinΨ
d P 3 dz = α 3 P 3 +2 I 6 P 1 3 2 P 3 1 2 sinΨ
dΨ dz =δβ+3( I 4 I 1 ) P 1 +( I 5 3 I 2 ) P 3 +( I 6 P 1 3 2 P 3 1 2 3 I 3 P 1 1 2 P 3 1 2 )cosΨ

Metrics