Abstract

In this paper, a response time of the surface plasmon resonance fiber optic hydrogen sensor has successfully improved with keeping sensor sensitivity high by means of hydrogen curing (immersing) process of annealed Au / Ta2O5 / Pd multi-layers film. The hydrogen curing effect on the response time and sensitivity has been experimentally revealed by changing the annealing temperatures of 400, 600, 800°C and through observing the optical loss change in the H2 curing process. When the 25-nm Au / 60-nm Ta2O5 / 10-nm Pd multi-layers film annealed at 600°C is cured with 4% H2 / N2 mixture, it is found that a lot of nano-sized cracks were produced on the Pd surface. After H2 curing process, the response time is improved to be 8 s, which is two times faster than previous reported one in the case of the 25-nm Au / 60-nm Ta2O5 / 3-nm Pd multi-layers film with keeping the sensor sensitivity of 0.27 dB for 4% hydrogen adding. Discussions most likely responsible for this effect are given by introducing the α-β transition Pd structure in the H2 curing process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
    [CrossRef]
  2. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [CrossRef] [PubMed]
  3. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
    [CrossRef]
  4. C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
    [CrossRef] [PubMed]
  5. P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic hydrogen sensor utilizing wavelength interrogation,” Proc. SPIE 8351, 83511V(2012).
    [CrossRef]
  6. C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
    [CrossRef]
  7. A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
    [CrossRef]
  8. A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
    [CrossRef]
  9. J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
    [CrossRef]
  10. M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2-3), 252–259 (2004).
    [CrossRef]
  11. K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending Characteristics of a Hetero-Core Splice Fiber Optic Sensor for Displacement and Liquid Detection,” IEICE Trans. Electron. 83(3), 309–314 (2000).
  12. M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
    [CrossRef]
  13. M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106(1), 363–368 (2005).
    [CrossRef]
  14. K. Takagi and K. Watanabe, “Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications,” Sensors (Basel) 12(12), 2208–2218 (2012).
    [CrossRef] [PubMed]
  15. D. Monzón-Hernández, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
    [CrossRef]
  16. Y. Tack Lee, J. M. Lee, Y. J. Kim, J. H. Joe, and W. Lee, “Hydrogen gas sensing properties of PdO thin films with nano-sized cracks,” Nanotechnology 21, 165503 (2010).
  17. Z. Zhao and M. A. Carpenter, “Annealing enhanced hydrogen absorption in nanocrystalline Pd/Au sensing films,” J. Appl. Phys. 97(12), 124301 (2005).
    [CrossRef]
  18. F. A. Lewis, “The Palladium Hydrogen System, (Academic Press, London and New York, 1967).
  19. X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
    [CrossRef]

2013

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
[CrossRef] [PubMed]

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
[CrossRef]

2012

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic hydrogen sensor utilizing wavelength interrogation,” Proc. SPIE 8351, 83511V(2012).
[CrossRef]

K. Takagi and K. Watanabe, “Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications,” Sensors (Basel) 12(12), 2208–2218 (2012).
[CrossRef] [PubMed]

2010

Y. Tack Lee, J. M. Lee, Y. J. Kim, J. H. Joe, and W. Lee, “Hydrogen gas sensing properties of PdO thin films with nano-sized cracks,” Nanotechnology 21, 165503 (2010).

2009

D. Monzón-Hernández, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

2008

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

2006

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

2005

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[CrossRef]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

Z. Zhao and M. A. Carpenter, “Annealing enhanced hydrogen absorption in nanocrystalline Pd/Au sensing films,” J. Appl. Phys. 97(12), 124301 (2005).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106(1), 363–368 (2005).
[CrossRef]

2004

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[CrossRef]

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2-3), 252–259 (2004).
[CrossRef]

2000

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending Characteristics of a Hetero-Core Splice Fiber Optic Sensor for Displacement and Liquid Detection,” IEICE Trans. Electron. 83(3), 309–314 (2000).

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[CrossRef]

1999

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

1995

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[CrossRef]

Bévenot, X.

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[CrossRef]

Bhatia, P.

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic hydrogen sensor utilizing wavelength interrogation,” Proc. SPIE 8351, 83511V(2012).
[CrossRef]

Carpenter, M. A.

Z. Zhao and M. A. Carpenter, “Annealing enhanced hydrogen absorption in nanocrystalline Pd/Au sensing films,” J. Appl. Phys. 97(12), 124301 (2005).
[CrossRef]

Chen, H. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Choi, Y.

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
[CrossRef]

Clement, M.

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[CrossRef]

Dam, B.

Gagnaire, H.

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[CrossRef]

Gupta, B. D.

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic hydrogen sensor utilizing wavelength interrogation,” Proc. SPIE 8351, 83511V(2012).
[CrossRef]

Higashi, S.

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2-3), 252–259 (2004).
[CrossRef]

Higo, M.

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2-3), 252–259 (2004).
[CrossRef]

Homola, J.

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[CrossRef]

Hosoki, A.

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
[CrossRef]

Iga, M.

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106(1), 363–368 (2005).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[CrossRef]

Igawa, H.

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
[CrossRef]

Javahiraly, N.

Joe, J. H.

Y. Tack Lee, J. M. Lee, Y. J. Kim, J. H. Joe, and W. Lee, “Hydrogen gas sensing properties of PdO thin films with nano-sized cracks,” Nanotechnology 21, 165503 (2010).

Jyu, S. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Kazemi, A.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

Kim, Y. J.

Y. Tack Lee, J. M. Lee, Y. J. Kim, J. H. Joe, and W. Lee, “Hydrogen gas sensing properties of PdO thin films with nano-sized cracks,” Nanotechnology 21, 165503 (2010).

Kubota, Y.

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending Characteristics of a Hetero-Core Splice Fiber Optic Sensor for Displacement and Liquid Detection,” IEICE Trans. Electron. 83(3), 309–314 (2000).

Lee, J. M.

Y. Tack Lee, J. M. Lee, Y. J. Kim, J. H. Joe, and W. Lee, “Hydrogen gas sensing properties of PdO thin films with nano-sized cracks,” Nanotechnology 21, 165503 (2010).

Lee, W.

Y. Tack Lee, J. M. Lee, Y. J. Kim, J. H. Joe, and W. Lee, “Hydrogen gas sensing properties of PdO thin films with nano-sized cracks,” Nanotechnology 21, 165503 (2010).

Lin, S. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Lin, Y. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Liu, W. F.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Luna-Moreno, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[CrossRef]

Marin, E.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

Martinez-Escobar, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

Meyrueis, P.

Mitsushio, M.

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2-3), 252–259 (2004).
[CrossRef]

Monzon-Hernandez, D.

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[CrossRef]

Monzón-Hernández, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

Nishiyama, M.

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
[CrossRef]

Perrotton, C.

Petrick, R.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

Schreuders, H.

Seki, A.

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106(1), 363–368 (2005).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[CrossRef]

Slaman, M.

Sutapun, B.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

Tabib-Azar, M.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

Tack Lee, Y.

Y. Tack Lee, J. M. Lee, Y. J. Kim, J. H. Joe, and W. Lee, “Hydrogen gas sensing properties of PdO thin films with nano-sized cracks,” Nanotechnology 21, 165503 (2010).

Tajima, K.

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending Characteristics of a Hetero-Core Splice Fiber Optic Sensor for Displacement and Liquid Detection,” IEICE Trans. Electron. 83(3), 309–314 (2000).

Takagi, K.

K. Takagi and K. Watanabe, “Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications,” Sensors (Basel) 12(12), 2208–2218 (2012).
[CrossRef] [PubMed]

Tien, C. L.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Trouillet, A.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[CrossRef]

Veillas, C.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[CrossRef]

Villatoro, J.

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
[CrossRef] [PubMed]

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[CrossRef]

Watanabe, K.

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
[CrossRef]

K. Takagi and K. Watanabe, “Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications,” Sensors (Basel) 12(12), 2208–2218 (2012).
[CrossRef] [PubMed]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106(1), 363–368 (2005).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[CrossRef]

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending Characteristics of a Hetero-Core Splice Fiber Optic Sensor for Displacement and Liquid Detection,” IEICE Trans. Electron. 83(3), 309–314 (2000).

Westerwaal, R. J.

Zhao, Z.

Z. Zhao and M. A. Carpenter, “Annealing enhanced hydrogen absorption in nanocrystalline Pd/Au sensing films,” J. Appl. Phys. 97(12), 124301 (2005).
[CrossRef]

IEICE Trans. Electron.

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending Characteristics of a Hetero-Core Splice Fiber Optic Sensor for Displacement and Liquid Detection,” IEICE Trans. Electron. 83(3), 309–314 (2000).

J. Appl. Phys.

Z. Zhao and M. A. Carpenter, “Annealing enhanced hydrogen absorption in nanocrystalline Pd/Au sensing films,” J. Appl. Phys. 97(12), 124301 (2005).
[CrossRef]

Meas. Sci. Technol.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[CrossRef]

Nanotechnology

Y. Tack Lee, J. M. Lee, Y. J. Kim, J. H. Joe, and W. Lee, “Hydrogen gas sensing properties of PdO thin films with nano-sized cracks,” Nanotechnology 21, 165503 (2010).

Opt. Express

Proc. SPIE

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic hydrogen sensor utilizing wavelength interrogation,” Proc. SPIE 8351, 83511V(2012).
[CrossRef]

Sens. Actuators A Phys.

M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators A Phys. 111(2-3), 252–259 (2004).
[CrossRef]

Sens. Actuators B Chem.

J. Villatoro, D. Luna-Moreno, and D. Monzon-Hernandez, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[CrossRef]

A. Hosoki, M. Nishiyama, H. Igawa, A. Seki, Y. Choi, and K. Watanabe, “A surface plasmon resonance hydrogen sensor using Au / Ta2O5 / Pd multi-layers on hetero-core optical fiber structures,” Sens. Actuators B Chem. 185, 53–58 (2013).
[CrossRef]

J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B Chem. 29(1-3), 401–405 (1995).
[CrossRef]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[CrossRef]

D. Monzón-Hernández, D. Luna-Moreno, and D. Martinez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators B Chem. 101(3), 368–372 (2004).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B Chem. 106(1), 363–368 (2005).
[CrossRef]

X. Bévenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, “Hydrogen leak detection using an optical fibre sensor for aerospace applications,” Sens. Actuators B Chem. 67(1-2), 57–67 (2000).
[CrossRef]

Sensors (Basel)

K. Takagi and K. Watanabe, “Near Infrared Characterization of Hetero-Core Optical Fiber SPR Sensors Coated with Ta2O5 Film and Their Applications,” Sensors (Basel) 12(12), 2208–2218 (2012).
[CrossRef] [PubMed]

Thin Solid Films

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Other

F. A. Lewis, “The Palladium Hydrogen System, (Academic Press, London and New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A hetero-core optical fiber SPR hydrogen sensor and experimental set-up to measure the optical loss change of a hetero-core fiber SPR hydrogen sensor.

Fig. 2
Fig. 2

H2 response properties in the light intensity change of annealed Au 25 / Ta2O5 60 / Pd 10 nm annealed at a temperature of 600°C when exposed to pure N2 and 4% H2 / N2 mixture.

Fig. 3
Fig. 3

SEM images of (a) only sputtering before annealing, (b) after 600°C annealing and (c) H2-cured multi-layers film.

Fig. 4
Fig. 4

Optical loss changes of the hetero-core hydrogen SPR sensor with H2-cured multi-layers film after 600°C annealing process.

Fig. 5
Fig. 5

Optical loss as a function of hydrogen concentration for the H2 cured sensor (squares) and 3-nm Pd sensor (circles).

Fig. 6
Fig. 6

Real-time responses in the optical loss changes of the hetero-core hydrogen SPR sensor with multi-layers film after the H2 curing process of 25 nm Au / 60 nm Ta2O5 / 10 nm Pd annealed at 400°C.

Fig. 7
Fig. 7

The change of transmitted light intensity of multi-layers film annealed at a temperature of 400°C for exposure to 4% H2 in N2 during the H2 curing process.

Metrics