Abstract

Mode-division-multiplexing (MDM) and wavelength-division-multiplexing (WDM) are employed simultaneously in a multimode silicon waveguide to realize on-chip MDM and MDM-WDM transmission. Asymmetric Y-junction MDM multiplexers and demultiplexers are utilized for low coherently suppressed demultiplexed crosstalk at the receiver. We demonstrate aggregate bandwidths of 20 Gb/s and 60 Gb/s for MDM and MDM-WDM on-chip links, respectively, with measured 10−9 BER power penalties between 0.1 dB and 0.7 dB per channel.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [CrossRef]
  2. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  3. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
    [CrossRef]
  4. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
    [CrossRef]
  5. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [CrossRef] [PubMed]
  6. L.-W. Luo, N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, “Simultaneous mode and wavelength division multiplexing on-chip,” arXiv:1306.2378 (2013).
  7. P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-gb/s monolithic pdm-qpsk modulator in silicon,” in “European Conference and Exhibition on Optical Communication” (Optical Society of America, 2012).
    [CrossRef]
  8. H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
    [CrossRef]
  9. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
    [CrossRef]
  10. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [CrossRef] [PubMed]
  11. B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
    [CrossRef] [PubMed]
  12. S. Bagheri and W. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), pp. 166–168.
  13. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
    [CrossRef]
  14. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [CrossRef]
  15. M. Ye, Y. Yu, J. Zou, W. Yang, and X. Zhang, “On-chip multiplexing conversion between wavelength division multiplexing–polarization division multiplexing and wavelength division multiplexing–mode division multiplexing,” Opt. Lett. 39(4), 758–761 (2014).
    [CrossRef] [PubMed]
  16. W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
    [CrossRef]
  17. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51(15), 2778–2783 (2012).
    [CrossRef] [PubMed]
  18. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y-junctions in silicon waveguides for on-chip mode-division-multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [CrossRef] [PubMed]
  19. W. Chen, P. Wang, and J. Yang, “Mode multi/demultiplexer based on cascaded asymmetric Y-junctions,” Opt. Express 21(21), 25113–25119 (2013).
    [CrossRef] [PubMed]
  20. D. A. Miller, “All linear optical devices are mode converters,” Opt. Express 20(21), 23985–23993 (2012).
    [CrossRef] [PubMed]
  21. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, and R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
    [CrossRef] [PubMed]
  22. R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki, Optical Networks: A Practical Perspective, 3rd ed. (Morgan Kaufmann, 2009).

2014

2013

2012

2010

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

2009

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

2008

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

2006

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

1975

W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[CrossRef]

Albonesi, D. H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Bagheri, S.

S. Bagheri and W. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), pp. 166–168.

Bergman, K.

J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, and R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express 20(8), 9227–9242 (2012).
[CrossRef] [PubMed]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

L.-W. Luo, N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, “Simultaneous mode and wavelength division multiplexing on-chip,” arXiv:1306.2378 (2013).

Biberman, A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Buhl, L. L.

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-gb/s monolithic pdm-qpsk modulator in silicon,” in “European Conference and Exhibition on Optical Communication” (Optical Society of America, 2012).
[CrossRef]

Burns, W.

W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Chen, C.

L.-W. Luo, N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, “Simultaneous mode and wavelength division multiplexing on-chip,” arXiv:1306.2378 (2013).

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, L.

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-gb/s monolithic pdm-qpsk modulator in silicon,” in “European Conference and Exhibition on Optical Communication” (Optical Society of America, 2012).
[CrossRef]

Chen, W.

Chen, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Chen, Y.-K.

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-gb/s monolithic pdm-qpsk modulator in silicon,” in “European Conference and Exhibition on Optical Communication” (Optical Society of America, 2012).
[CrossRef]

Chou, C.-Y.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Da Ros, F.

Dadap, J. I.

Dai, D.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[CrossRef]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[CrossRef]

Ding, Y.

Dong, P.

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-gb/s monolithic pdm-qpsk modulator in silicon,” in “European Conference and Exhibition on Optical Communication” (Optical Society of America, 2012).
[CrossRef]

Dorin, B. A.

Driscoll, J. B.

Fauchet, P. M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Friedman, E. G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

L.-W. Luo, N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, “Simultaneous mode and wavelength division multiplexing on-chip,” arXiv:1306.2378 (2013).

Galili, M.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Green, W.

S. Bagheri and W. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), pp. 166–168.

Green, W. M.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Grote, R. R.

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

He, S.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[CrossRef]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[CrossRef]

Hsieh, I.-W.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Hu, H.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Huang, B.

Hvam, J. M.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Ishizaka, Y.

Jeppesen, P.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Ji, H.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Kawaguchi, Y.

Koshiba, M.

Lee, B. G.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Lipson, M.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

L.-W. Luo, N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, “Simultaneous mode and wavelength division multiplexing on-chip,” arXiv:1306.2378 (2013).

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Liu, X.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Love, J. D.

Lu, M.

Luo, L.-W.

L.-W. Luo, N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, “Simultaneous mode and wavelength division multiplexing on-chip,” arXiv:1306.2378 (2013).

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Miller, D. A.

Milton, A.

W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[CrossRef]

Nelson, N. A.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Ophir, N.

Osgood, R. M.

Ou, H.

Oxenløwe, L. K.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Panoiu, N. C.

Peucheret, C.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, “Simultaneous mode and wavelength division multiplexing on-chip,” arXiv:1306.2378 (2013).

Pu, M.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Ramaswami, R.

R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki, Optical Networks: A Practical Perspective, 3rd ed. (Morgan Kaufmann, 2009).

Riesen, N.

Saitoh, K.

Sasaki, G. H.

R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki, Optical Networks: A Practical Perspective, 3rd ed. (Morgan Kaufmann, 2009).

Sekaric, L.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Sivarajan, K. N.

R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki, Optical Networks: A Practical Perspective, 3rd ed. (Morgan Kaufmann, 2009).

Souhan, B.

Uematsu, T.

Vlasov, Y. A.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Wang, J.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[CrossRef]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[CrossRef]

Wang, P.

Xia, F.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

Xie, C.

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-gb/s monolithic pdm-qpsk modulator in silicon,” in “European Conference and Exhibition on Optical Communication” (Optical Society of America, 2012).
[CrossRef]

Xu, J.

Yang, J.

Yang, W.

Ye, M.

Ye, W. N.

Yu, Y.

Yvind, K.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Zhang, X.

Zou, J.

Appl. Opt.

IEEE J. Quantum Electron.

W. Burns and A. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron. 11(1), 32–39 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008).
[CrossRef]

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenløwe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

IEEE Trans. Comput.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

J. Lightwave Technol.

Laser Photon. Rev.

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photon. Rev. 8(2), L18–L22 (2014).
[CrossRef]

Nat. Commun.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. IEEE

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Prog. Electromagn. Res.

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).
[CrossRef]

Other

L.-W. Luo, N. Ophir, C. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergman, and M. Lipson, “Simultaneous mode and wavelength division multiplexing on-chip,” arXiv:1306.2378 (2013).

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-gb/s monolithic pdm-qpsk modulator in silicon,” in “European Conference and Exhibition on Optical Communication” (Optical Society of America, 2012).
[CrossRef]

S. Bagheri and W. Green, “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Group IV Photonics Conference (San Francisco, United States of America, 2009), pp. 166–168.

R. Ramaswami, K. N. Sivarajan, and G. H. Sasaki, Optical Networks: A Practical Perspective, 3rd ed. (Morgan Kaufmann, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration showing simultaneous multiplexing of M wavelengths and N modes at bandwidth B for MDM-WDM with a total N × M × B aggregate bandwidth.

Fig. 2
Fig. 2

(a) Illustration of mode mux/demux using asymmetric Y-junctions. For a 1 μm wide waveguide at λ = 1550 nm, Ey component of: (b) fundamental QTM mode of Arm A and Arm C, (c) fundamental QTM mode of Arm B and Arm D (d) first even QTM mode of multimode interconnect (e) first odd mode of multimode interconnect.

Fig. 3
Fig. 3

(a) Spectral response of the crosstalk port, Arm D (Arm C) in the demux for launching into Arm A (Arm B) of the mux. Low crosstalk dips are observed at specific wavelengths, which are chosen for MDM and MDM-WDM demonstrations with low crosstalk.

Fig. 4
Fig. 4

(a) Schematic showing muxing and demuxing of different MDM channels. Top view of IR camera for (b) CH1 ON CH2 OFF, (c) CH1 OFF CH2 ON, and (d) both MDM channels ON.

Fig. 5
Fig. 5

Experimental diagram: BERT = bit-error-rate-tester, LA = limiting amplifier, PC = polarization controller, TL = tunable laser, PPG = pulsed-pattern-generator, EDFA = erbium-doped fiber amplifier, ISO = isolator, P = position, S = switch, PS = polarization splitter, PM = power meter, PROFA = pitch-reducing optical fiber array, LTF = lensed-tapered fiber, BPF = bandpass filter, VOA = variable optical attenuator, DCA = digital communications analyzer.

Fig. 6
Fig. 6

BER curves for the cases of back-to-back (B2B) by bypassing the chip, MDM CH1 and CH2 demuxed individually, and MDM CH1 and CH2 demuxed simultaneously for λ = (a) 1535 nm (b) 1543 nm, (c) 1551 nm (d) 1561 nm (e) 1570 nm, and the corresponding eye diagrams. Together, these BER plots show 2 × 10 Gb/s MDM (20 Gb/s aggregate bandwidth) at 5 different wavelengths. The two MDM channels have a measured 10−9 BER penalty (MDM CH1 PP/MDM CH2 PP) of 0.60 dB/0.70 dB, 0.40 dB/0.50 dB, 0.70 dB/0.70 dB, 0.20 dB/0.10 dB, and 0.30 dB/0.40 dB for λ = 1535 nm, 1543 nm, 1551 nm, 1561 nm, and 1570 nm respectively, as listed in Table 2.

Fig. 7
Fig. 7

BER curves showing B2B by bypassing the chip, MDM CH1 and CH2 demuxed individually, and MDM CH1 and CH2 demuxed simultaneously, and for simultaneously demuxing WDM λ = (a) 1543 nm (b) 1551 nm, (c) 1561 nm, and the corresponding eye diagrams. Taken together, these BER plots demonstrates 2 × 3 × 10 Gb/s MDM-WDM (60 Gb/s aggregate bandwidth) using 2 modal channels, and 6 wavelength channels all at 10 Gb/s, with measured power penalties of the 6 demultiplexed data channels of only 0.70 dB, 0.60 dB, 0.70 dB, 0.70 dB, 0.10 dB, and 0.10 dB as shown in Table 4.

Tables (4)

Tables Icon

Table 1 MDM: Measured demuxed power levels for each wavelength channel, through each of the two arms of the MDM demux: PAC, PAD, PBD, PBC, PAD, and PBC represent demultiplexed crosstalk power at the receiver. Crosstalk imbalance resulting from insertion loss imbalance is equalized by finding ΔP and using Eq. (10). The balanced crosstalk after equalization is given by the ε column.

Tables Icon

Table 2 2 × 10 Gb/s MDM (20 Gb/s aggregate bandwidth) PP: Measured 10−9 BER PP for both MDM channels at 5 different wavelengths. Expected PP column shows the expected penalty from using the crosstalk numbers from Table 1 in conjunction with Eq. (9). Measured PP values are extracted from complementary error-function fitting of experimental data points as shown in Fig. 6.

Tables Icon

Table 3 MDM-WDM: Measured demuxed power levels for each wavelength channel, through each of the two arms of the MDM demux: PAC, PAD, PBD, PBC, PAD, and PBC represent demultiplexed crosstalk power at the receiver. Crosstalk imbalance resulting from insertion loss imbalance is equalized by finding ΔP and using Eq. (10). The balanced crosstalk after equalization is given by the ε column.

Tables Icon

Table 4 Measured 10−9 BER PP for all 6 MDM-WDM channels. Expected PP column shows the expected penalty from using the crosstalk numbers from Table 3 in conjunction with Eq. (9). Measured PP values are extracted from complementary error-function fitting of experimental data points as shown in Fig. 7.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

MCF = | β A β B | θ [ radians ] γ A B
D mux | ψ i = [ κ 11 κ 21 κ 12 κ 22 ] [ ψ A ψ B ] = | ψ o = [ ψ TM , 1 ψ TM , 2 ] ,
P = [ e j β e L MM 0 0 e j β o L MM ] ,
[ ψ A , demux ψ B , demux ] = D mux 1 PD mux [ ψ A , mux ψ B , mux ] = e j β e L MM κ 11 κ 22 κ 12 κ 21 [ κ 11 κ 22 κ 12 κ 21 e j ( β o β e ) L MM κ 12 κ 21 κ 12 κ 21 e j ( β o β e ) L MM κ 11 κ 22 κ 12 κ 22 e j ( β o β e ) L MM κ 11 κ 22 κ 12 κ 21 e j ( β o β e ) L MM ] [ ψ A , mux ψ B , mux ]
[ ψ A , demux ψ B , demux ] = e j β e L MM [ 1 0 0 1 ] [ ψ A , mux ψ B , mux ]
Δ ϕ e , o = 2 π L MM | n eff , e n eff , o | λ = 2 π m ,
Δ λ FSR = | λ 2 L MM ( n g , e n g , o ) | .
ε = P x P t ,
PP [ dB ] = 10 log ( 1 2 ε )
Δ P [ dBm ] = P BC + P BD P AC P AD 2 [ dBm ] ,

Metrics