Abstract

This paper presents dynamical diffraction properties of a femtosecond pulse in a sinusoidal volume holographic grating (VHG). By the modified coupled-wave equations of Kogelnik, we show that the diffraction of a femtosecond pulse on the VHG gives rise to periodical energy oscillation and pulse splitting. In the initial stage of diffraction, one diffracted pulse and one transmitted pulse emerge, and energy of the transmitted pulse periodically transfers to the diffracted pulse and vice versa. In the latter stage, both the diffracted and transmitted pulses split into two spatially separated pulses. One pair of transmitted and diffracted pulses propagates in the same direction and forms the output diffracted dual pulses of the VHG, and the other pair of pulses forms the output transmitted dual pulses. The pulse interval between each pair of dual pulses is in linearly proportional to the refractive index modulation and grating thickness. By the interference effect and group velocity difference we give explanations on the periodical energy oscillation and pulse splitting respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhao, X. Tong, and C. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
    [CrossRef]
  2. C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
    [CrossRef] [PubMed]
  3. S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
    [CrossRef] [PubMed]
  4. T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86(25), 251103 (2005).
    [CrossRef]
  5. S. Noel, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255(24), 9738–9741 (2009).
    [CrossRef]
  6. F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
    [CrossRef]
  7. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
  8. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating,” Opt. Express 11(1), 68–78 (2003).
    [CrossRef] [PubMed]
  9. J. L. Chilla and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16(1), 39–41 (1991).
    [CrossRef] [PubMed]
  10. G. Li, C. Zhou, and E. Dai, “Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings,” J. Opt. Soc. Am. A 22(4), 767–772 (2005).
    [CrossRef] [PubMed]
  11. E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13(16), 6145–6152 (2005).
    [CrossRef] [PubMed]
  12. J. Zheng, C. Zhou, and E. Dai, “Double-line-density gratings structure for compression and generation of double femtosecond laser pulses,” J. Opt. Soc. Am. B 24(4), 979–984 (2007).
    [CrossRef]
  13. B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik (Stuttg.) 119(2), 74–80 (2008).
    [CrossRef]
  14. W. Liu, B. Bai, C. Zhou, S. Qu, E. Dai, and G. Li, “Generating femtosecond double pulses using Damman reflection grating,” Acta Phys. Sin. 56, 3292–3298 (2007).
  15. T. Wu, C. Zhou, J. Zheng, J. Feng, H. Cao, L. Zhu, and W. Jia, “Generation of double femtosecond pulses by using two transmissive gratings,” Appl. Opt. 49(24), 4506–4513 (2010).
    [CrossRef] [PubMed]
  16. V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, “Diffraction-induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 79(5), 053811 (2009).
    [CrossRef]
  17. S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
    [CrossRef]
  18. A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: diffraction induced splitting, selective compression, and focusing of pulses,” J. Exp. Theor. Phys. 115(1), 56–67 (2012).
    [CrossRef]
  19. Z. Gao, X. Yan, Y. Dai, X. Yang, and G. Ma, “Generation of femtosecond double pulse by adjusting the refractive Index modulation of volume holographic grating,” Appl. Phys. B 112(1), 67–72 (2013).
    [CrossRef]
  20. X. Yan, Y. Dai, Z. Gao, Y. Chen, X. Yang, and G. Ma, “Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating,” Opt. Express 21(6), 7560–7569 (2013).
    [CrossRef] [PubMed]
  21. Y. Ding, D. D. Nolte, Z. Zheng, A. Kanan, A. M. Weiner, and G. A. Brost, “Bandwidth study of volume holography in photorefractive InP:Fe for femtosecond pulse readout at 1.5 μm,” J. Opt. Soc. Am. B 15(11), 2763–2768 (1998).
    [CrossRef]
  22. X. Yan, B. Yang, and B. Yu, “Diffraction study of photorefractive hologram under ultrashort pulse readout,” Optik (Stuttg.) 115(11-12), 512–516 (2004).
    [CrossRef]
  23. B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol. 40(7), 906–911 (2008).
    [CrossRef]
  24. C. Wang, L. Liu, A. Yan, D. Liu, D. Li, and W. Qu, “Pulse shaping properties of volume holographic gratings in anisotropic media,” J. Opt. Soc. Am. A 23(12), 3191–3196 (2006).
    [CrossRef] [PubMed]
  25. M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Bañares, “Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses,” Opt. Express 19(2), 1516–1527 (2011).
    [CrossRef] [PubMed]
  26. L. A. Siiman, J. Lumeau, L. Canioni, and L. B. Glebov, “Ultrashort laser pulse diffraction by transmitting volume Bragg gratings in photo-thermo-refractive glass,” Opt. Lett. 34(17), 2572–2574 (2009).
    [CrossRef] [PubMed]
  27. A. Yan, L. Liu, Y. Zhi, D. Liu, and J. Sun, “Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout,” J. Opt. Soc. Am. A 26(1), 135–141 (2009).
    [CrossRef] [PubMed]
  28. A. Yan, L. Liu, L. Wang, D. Liu, J. Sun, and L. Wan, “Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings,” Appl. Phys. B 96(1), 71–77 (2009).
    [CrossRef]
  29. X. Yan, M. Qian, L. Gao, X. Yang, Y. Dai, X. Yan, and G. Ma, “Pulse splitting by modulating the buffer layer thickness of two-layer volume holographic grating,” Opt. Express 21, 31852–31861 (2013).
    [CrossRef] [PubMed]
  30. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [CrossRef]
  31. C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt. 3(6), 504–513 (2001).
    [CrossRef]
  32. D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. (Berl.) 8(2), 85–100 (1975).
    [CrossRef]
  33. S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
    [CrossRef]
  34. C. G. Shull, “Observation of Pendellösung fringe structure in neutron diffraction,” Phys. Rev. Lett. 21(23), 1585–1589 (1968).
    [CrossRef]
  35. S. Dürr, S. Kunze, and G. Rempe, “Pendellösung oscillations in second-order Bragg scattering of atoms from a standing light wave,” Quantum Semiclass. Opt. 8(3), 531–539 (1996).
    [CrossRef]
  36. C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
    [CrossRef]
  37. B. W. Batterman and H. E. N. D. E. R. S. O. N. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36(3), 681–717 (1964).
    [CrossRef]
  38. M. L. Calvo, P. Cheben, O. Martínez-Matos, F. del Monte, and J. A. Rodrigo, “Experimental detection of the optical Pendellösung effect,” Phys. Rev. Lett. 97(8), 084801 (2006).
    [CrossRef] [PubMed]

2013

2012

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: diffraction induced splitting, selective compression, and focusing of pulses,” J. Exp. Theor. Phys. 115(1), 56–67 (2012).
[CrossRef]

2011

2010

2009

V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, “Diffraction-induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 79(5), 053811 (2009).
[CrossRef]

S. Noel, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255(24), 9738–9741 (2009).
[CrossRef]

A. Yan, L. Liu, L. Wang, D. Liu, J. Sun, and L. Wan, “Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings,” Appl. Phys. B 96(1), 71–77 (2009).
[CrossRef]

A. Yan, L. Liu, Y. Zhi, D. Liu, and J. Sun, “Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout,” J. Opt. Soc. Am. A 26(1), 135–141 (2009).
[CrossRef] [PubMed]

L. A. Siiman, J. Lumeau, L. Canioni, and L. B. Glebov, “Ultrashort laser pulse diffraction by transmitting volume Bragg gratings in photo-thermo-refractive glass,” Opt. Lett. 34(17), 2572–2574 (2009).
[CrossRef] [PubMed]

2008

B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik (Stuttg.) 119(2), 74–80 (2008).
[CrossRef]

B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol. 40(7), 906–911 (2008).
[CrossRef]

2007

W. Liu, B. Bai, C. Zhou, S. Qu, E. Dai, and G. Li, “Generating femtosecond double pulses using Damman reflection grating,” Acta Phys. Sin. 56, 3292–3298 (2007).

J. Zheng, C. Zhou, and E. Dai, “Double-line-density gratings structure for compression and generation of double femtosecond laser pulses,” J. Opt. Soc. Am. B 24(4), 979–984 (2007).
[CrossRef]

2006

C. Wang, L. Liu, A. Yan, D. Liu, D. Li, and W. Qu, “Pulse shaping properties of volume holographic gratings in anisotropic media,” J. Opt. Soc. Am. A 23(12), 3191–3196 (2006).
[CrossRef] [PubMed]

M. L. Calvo, P. Cheben, O. Martínez-Matos, F. del Monte, and J. A. Rodrigo, “Experimental detection of the optical Pendellösung effect,” Phys. Rev. Lett. 97(8), 084801 (2006).
[CrossRef] [PubMed]

S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
[CrossRef] [PubMed]

2005

2004

X. Yan, B. Yang, and B. Yu, “Diffraction study of photorefractive hologram under ultrashort pulse readout,” Optik (Stuttg.) 115(11-12), 512–516 (2004).
[CrossRef]

2003

S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
[CrossRef]

Z. Zhao, X. Tong, and C. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[CrossRef]

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating,” Opt. Express 11(1), 68–78 (2003).
[CrossRef] [PubMed]

2001

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt. 3(6), 504–513 (2001).
[CrossRef]

1999

C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
[CrossRef]

1998

1996

S. Dürr, S. Kunze, and G. Rempe, “Pendellösung oscillations in second-order Bragg scattering of atoms from a standing light wave,” Quantum Semiclass. Opt. 8(3), 531–539 (1996).
[CrossRef]

1991

1975

D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. (Berl.) 8(2), 85–100 (1975).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

1968

C. G. Shull, “Observation of Pendellösung fringe structure in neutron diffraction,” Phys. Rev. Lett. 21(23), 1585–1589 (1968).
[CrossRef]

1964

B. W. Batterman and H. E. N. D. E. R. S. O. N. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36(3), 681–717 (1964).
[CrossRef]

Akturk, S.

Axente, E.

S. Noel, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255(24), 9738–9741 (2009).
[CrossRef]

Bai, B.

B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik (Stuttg.) 119(2), 74–80 (2008).
[CrossRef]

W. Liu, B. Bai, C. Zhou, S. Qu, E. Dai, and G. Li, “Generating femtosecond double pulses using Damman reflection grating,” Acta Phys. Sin. 56, 3292–3298 (2007).

Bañares, L.

Batterman, B. W.

B. W. Batterman and H. E. N. D. E. R. S. O. N. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36(3), 681–717 (1964).
[CrossRef]

Beléndez, A.

S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
[CrossRef]

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt. 3(6), 504–513 (2001).
[CrossRef]

Bourquard, F.

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

Brost, G. A.

Bushuev, V. A.

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: diffraction induced splitting, selective compression, and focusing of pulses,” J. Exp. Theor. Phys. 115(1), 56–67 (2012).
[CrossRef]

V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, “Diffraction-induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 79(5), 053811 (2009).
[CrossRef]

Calvo, M. L.

Canioni, L.

Cao, H.

Cheben, P.

Chekalin, S. V.

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

Chen, Y.

Chilla, J. L.

Cole, H. E. N. D. E. R. S. O. N.

B. W. Batterman and H. E. N. D. E. R. S. O. N. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36(3), 681–717 (1964).
[CrossRef]

Colombier, J.

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

Dai, E.

Dai, Y.

Daniel, C.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

del Monte, F.

M. L. Calvo, P. Cheben, O. Martínez-Matos, F. del Monte, and J. A. Rodrigo, “Experimental detection of the optical Pendellösung effect,” Phys. Rev. Lett. 97(8), 084801 (2006).
[CrossRef] [PubMed]

Ding, Y.

Donnet, C.

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

Durr, S.

C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
[CrossRef]

Dürr, S.

S. Dürr, S. Kunze, and G. Rempe, “Pendellösung oscillations in second-order Bragg scattering of atoms from a standing light wave,” Quantum Semiclass. Opt. 8(3), 531–539 (1996).
[CrossRef]

Feng, J.

Full, J.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Gallego, S.

S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
[CrossRef]

Gao, L.

Gao, Z.

X. Yan, Y. Dai, Z. Gao, Y. Chen, X. Yang, and G. Ma, “Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating,” Opt. Express 21(6), 7560–7569 (2013).
[CrossRef] [PubMed]

Z. Gao, X. Yan, Y. Dai, X. Yang, and G. Ma, “Generation of femtosecond double pulse by adjusting the refractive Index modulation of volume holographic grating,” Appl. Phys. B 112(1), 67–72 (2013).
[CrossRef]

Garcia, C.

S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
[CrossRef]

Garrelie, F.

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

Glass, A. M.

D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. (Berl.) 8(2), 85–100 (1975).
[CrossRef]

Glebov, L. B.

González, L.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Guillermin, M.

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

Hermann, J.

S. Noel, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255(24), 9738–9741 (2009).
[CrossRef]

Hernández-Garay, M. P.

Ishige, Y.

S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
[CrossRef] [PubMed]

Iwai, S.

S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
[CrossRef] [PubMed]

Izquierdo, J. G.

Jia, W.

Kamata, M.

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86(25), 251103 (2005).
[CrossRef]

Kanan, A.

Keller, C.

C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
[CrossRef]

Kimmel, M.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

Kompanets, V. O.

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

Kunze, S.

S. Dürr, S. Kunze, and G. Rempe, “Pendellösung oscillations in second-order Bragg scattering of atoms from a standing light wave,” Quantum Semiclass. Opt. 8(3), 531–539 (1996).
[CrossRef]

Li, D.

Li, G.

Lin, C.

Z. Zhao, X. Tong, and C. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[CrossRef]

Liu, D.

Liu, L.

Liu, W.

W. Liu, B. Bai, C. Zhou, S. Qu, E. Dai, and G. Li, “Generating femtosecond double pulses using Damman reflection grating,” Acta Phys. Sin. 56, 3292–3298 (2007).

Loir, A.

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

Lumeau, J.

Lupulescu, C.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Ma, G.

Mantsyzov, B. I.

A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: diffraction induced splitting, selective compression, and focusing of pulses,” J. Exp. Theor. Phys. 115(1), 56–67 (2012).
[CrossRef]

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, “Diffraction-induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 79(5), 053811 (2009).
[CrossRef]

Manz, J.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Martinez, O. E.

Martínez-Matos, O.

Maydykovskiv, A. I.

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

Merli, A.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Murzina, T. V.

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

Nagata, T.

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86(25), 251103 (2005).
[CrossRef]

Neipp, C.

S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
[CrossRef]

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt. 3(6), 504–513 (2001).
[CrossRef]

Noel, S.

S. Noel, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255(24), 9738–9741 (2009).
[CrossRef]

Nolte, D. D.

Nonn, T.

C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
[CrossRef]

O’Shea, P.

Obara, M.

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86(25), 251103 (2005).
[CrossRef]

Okamoto, H.

S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
[CrossRef] [PubMed]

Okimoto, Y.

S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
[CrossRef] [PubMed]

Ortuño, M.

S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
[CrossRef]

Pascual, I.

S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
[CrossRef]

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt. 3(6), 504–513 (2001).
[CrossRef]

Qian, M.

Qu, S.

W. Liu, B. Bai, C. Zhou, S. Qu, E. Dai, and G. Li, “Generating femtosecond double pulses using Damman reflection grating,” Acta Phys. Sin. 56, 3292–3298 (2007).

Qu, W.

Rempe, G.

C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
[CrossRef]

S. Dürr, S. Kunze, and G. Rempe, “Pendellösung oscillations in second-order Bragg scattering of atoms from a standing light wave,” Quantum Semiclass. Opt. 8(3), 531–539 (1996).
[CrossRef]

Rodrigo, J. A.

M. L. Calvo, P. Cheben, O. Martínez-Matos, F. del Monte, and J. A. Rodrigo, “Experimental detection of the optical Pendellösung effect,” Phys. Rev. Lett. 97(8), 084801 (2006).
[CrossRef] [PubMed]

Schmiedmayer, J.

C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
[CrossRef]

Shull, C. G.

C. G. Shull, “Observation of Pendellösung fringe structure in neutron diffraction,” Phys. Rev. Lett. 21(23), 1585–1589 (1968).
[CrossRef]

Siiman, L. A.

Skorynin, A. A.

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: diffraction induced splitting, selective compression, and focusing of pulses,” J. Exp. Theor. Phys. 115(1), 56–67 (2012).
[CrossRef]

V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, “Diffraction-induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 79(5), 053811 (2009).
[CrossRef]

Stoian, R.

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

Sun, J.

A. Yan, L. Liu, Y. Zhi, D. Liu, and J. Sun, “Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout,” J. Opt. Soc. Am. A 26(1), 135–141 (2009).
[CrossRef] [PubMed]

A. Yan, L. Liu, L. Wang, D. Liu, J. Sun, and L. Wan, “Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings,” Appl. Phys. B 96(1), 71–77 (2009).
[CrossRef]

Svyakhovskiy, S. E.

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

Tanaka, S.

S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
[CrossRef] [PubMed]

Tokura, Y.

S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
[CrossRef] [PubMed]

Tong, X.

Z. Zhao, X. Tong, and C. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[CrossRef]

Trebino, R.

Vajda, S.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Vaveliuk, P.

von der Linde, D.

D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. (Berl.) 8(2), 85–100 (1975).
[CrossRef]

Wan, L.

A. Yan, L. Liu, L. Wang, D. Liu, J. Sun, and L. Wan, “Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings,” Appl. Phys. B 96(1), 71–77 (2009).
[CrossRef]

Wang, C.

Wang, L.

A. Yan, L. Liu, L. Wang, D. Liu, J. Sun, and L. Wan, “Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings,” Appl. Phys. B 96(1), 71–77 (2009).
[CrossRef]

Weiner, A. M.

Wöste, L.

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Wu, T.

Yan, A.

Yan, X.

X. Yan, Y. Dai, Z. Gao, Y. Chen, X. Yang, and G. Ma, “Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating,” Opt. Express 21(6), 7560–7569 (2013).
[CrossRef] [PubMed]

X. Yan, M. Qian, L. Gao, X. Yang, Y. Dai, X. Yan, and G. Ma, “Pulse splitting by modulating the buffer layer thickness of two-layer volume holographic grating,” Opt. Express 21, 31852–31861 (2013).
[CrossRef] [PubMed]

X. Yan, M. Qian, L. Gao, X. Yang, Y. Dai, X. Yan, and G. Ma, “Pulse splitting by modulating the buffer layer thickness of two-layer volume holographic grating,” Opt. Express 21, 31852–31861 (2013).
[CrossRef] [PubMed]

Z. Gao, X. Yan, Y. Dai, X. Yang, and G. Ma, “Generation of femtosecond double pulse by adjusting the refractive Index modulation of volume holographic grating,” Appl. Phys. B 112(1), 67–72 (2013).
[CrossRef]

B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol. 40(7), 906–911 (2008).
[CrossRef]

X. Yan, B. Yang, and B. Yu, “Diffraction study of photorefractive hologram under ultrashort pulse readout,” Optik (Stuttg.) 115(11-12), 512–516 (2004).
[CrossRef]

Yang, B.

B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol. 40(7), 906–911 (2008).
[CrossRef]

X. Yan, B. Yang, and B. Yu, “Diffraction study of photorefractive hologram under ultrashort pulse readout,” Optik (Stuttg.) 115(11-12), 512–516 (2004).
[CrossRef]

Yang, X.

Yang, Y.

B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol. 40(7), 906–911 (2008).
[CrossRef]

Yu, B.

X. Yan, B. Yang, and B. Yu, “Diffraction study of photorefractive hologram under ultrashort pulse readout,” Optik (Stuttg.) 115(11-12), 512–516 (2004).
[CrossRef]

Zeilinger, A.

C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
[CrossRef]

Zhang, H.

B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol. 40(7), 906–911 (2008).
[CrossRef]

Zhao, Z.

Z. Zhao, X. Tong, and C. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[CrossRef]

Zheng, J.

Zheng, Z.

Zhi, Y.

Zhou, C.

Zhu, L.

Acta Phys. Sin.

W. Liu, B. Bai, C. Zhou, S. Qu, E. Dai, and G. Li, “Generating femtosecond double pulses using Damman reflection grating,” Acta Phys. Sin. 56, 3292–3298 (2007).

Appl. Opt.

Appl. Phys. (Berl.)

D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. (Berl.) 8(2), 85–100 (1975).
[CrossRef]

Appl. Phys. B

C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Durr, and G. Rempe, “Adiabatic following in standing-wave diffraction of atoms,” Appl. Phys. B 69(4), 303–309 (1999).
[CrossRef]

A. Yan, L. Liu, L. Wang, D. Liu, J. Sun, and L. Wan, “Pulse shaping and diffraction properties of multi-layers reflection volume holographic gratings,” Appl. Phys. B 96(1), 71–77 (2009).
[CrossRef]

Z. Gao, X. Yan, Y. Dai, X. Yang, and G. Ma, “Generation of femtosecond double pulse by adjusting the refractive Index modulation of volume holographic grating,” Appl. Phys. B 112(1), 67–72 (2013).
[CrossRef]

Appl. Phys. Lett.

T. Nagata, M. Kamata, and M. Obara, “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86(25), 251103 (2005).
[CrossRef]

Appl. Surf. Sci.

S. Noel, E. Axente, and J. Hermann, “Investigation of plumes produced by material ablation with two time-delayed femtosecond laser pulses,” Appl. Surf. Sci. 255(24), 9738–9741 (2009).
[CrossRef]

F. Bourquard, J. Colombier, M. Guillermin, A. Loir, C. Donnet, R. Stoian, and F. Garrelie, “Temporal pulse shaping effects on aluminium and boron ablation plumes generated by ultrashort pulsed laser ablation and analyzed by time- and space-resolved optical spectroscopy,” Appl. Surf. Sci. 258(23), 9374–9378 (2012).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[CrossRef]

J. Exp. Theor. Phys.

A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: diffraction induced splitting, selective compression, and focusing of pulses,” J. Exp. Theor. Phys. 115(1), 56–67 (2012).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt. 3(6), 504–513 (2001).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

S. Gallego, M. Ortuño, C. Neipp, C. Garcia, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4-6), 263–269 (2003).
[CrossRef]

Opt. Express

Opt. Laser Technol.

B. Yang, X. Yan, Y. Yang, and H. Zhang, “Study on the instantaneous characteristics of diffracted and transmitted light of static photorefractive grating illuminated by ultra-short pulse laser,” Opt. Laser Technol. 40(7), 906–911 (2008).
[CrossRef]

Opt. Lett.

Optik (Stuttg.)

B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik (Stuttg.) 119(2), 74–80 (2008).
[CrossRef]

X. Yan, B. Yang, and B. Yu, “Diffraction study of photorefractive hologram under ultrashort pulse readout,” Optik (Stuttg.) 115(11-12), 512–516 (2004).
[CrossRef]

Phys. Rev. A

Z. Zhao, X. Tong, and C. Lin, “Alignment-dependent ionization probability of molecules in a double-pulse laser field,” Phys. Rev. A 67(4), 043404 (2003).
[CrossRef]

V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, “Diffraction-induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 79(5), 053811 (2009).
[CrossRef]

S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maydykovskiv, T. V. Murzina, S. V. Chekalin, A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Observation of the temporal Bragg-diffraction induced laser pulse splitting in a linear photonic crystal,” Phys. Rev. A 86(1), 013843 (2012).
[CrossRef]

Phys. Rev. Lett.

S. Iwai, Y. Ishige, S. Tanaka, Y. Okimoto, Y. Tokura, and H. Okamoto, “Coherent control of charge and lattice dynamics in a photoinduced neutral-to-ionic transition of a charge-transfer compound,” Phys. Rev. Lett. 96(5), 057403 (2006).
[CrossRef] [PubMed]

C. G. Shull, “Observation of Pendellösung fringe structure in neutron diffraction,” Phys. Rev. Lett. 21(23), 1585–1589 (1968).
[CrossRef]

M. L. Calvo, P. Cheben, O. Martínez-Matos, F. del Monte, and J. A. Rodrigo, “Experimental detection of the optical Pendellösung effect,” Phys. Rev. Lett. 97(8), 084801 (2006).
[CrossRef] [PubMed]

Quantum Semiclass. Opt.

S. Dürr, S. Kunze, and G. Rempe, “Pendellösung oscillations in second-order Bragg scattering of atoms from a standing light wave,” Quantum Semiclass. Opt. 8(3), 531–539 (1996).
[CrossRef]

Rev. Mod. Phys.

B. W. Batterman and H. E. N. D. E. R. S. O. N. Cole, “Dynamical diffraction of X rays by perfect crystals,” Rev. Mod. Phys. 36(3), 681–717 (1964).
[CrossRef]

Science

C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, S. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003).
[CrossRef] [PubMed]

Other

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Temporal-spatial dynamics of the incident femtosecond pulse evolution inside the VHG. Intensities of (a) diffracted pulse Id (t, z) and (b) transmitted pulse It (t, z) with respect to time and thickness of the VHG.

Fig. 2
Fig. 2

Periodical energy oscillation occurs in the initial stage of diffraction when the VHG thickness is in the range of 0mm to 1.0mm. The energy periodically transfers from (a) transmitted pulse to (b) diffracted pulse and vice versa.

Fig. 3
Fig. 3

Pulse splitting in the latter stage of diffraction of (a) transmitted pulse and (b) diffracted pulse in the VHG when the propagating depth is in the range of 1.5mm to 4mm.

Fig. 4
Fig. 4

(a) Temporal diffracted intensity when the refractive index modulation is fixed at 1.25 × 10−2 and the thickness of the VHG changes in the range of 3.5mm to 7mm; (b) Relation between pulse interval of the diffracted dual pulses and the thickness of VHG.

Fig. 5
Fig. 5

(a) Temporal diffracted intensity when the thickness is fixed at 7.8mm and the refractive index modulation changes in the range of 6.50 × 10−3 to 3.05 × 10−2. (b) Relation between the pulse interval and refractive index modulations of the VHG.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n= n 0 +Δncos(Kx),
E r (t)=exp(i ω 0 t t 2 / T 2 ),
E r (ω)= 1 2π E r (t) exp(iωt)dt= T 2 π exp[ T 2 (ω ω 0 ) 2 4 ].
E(ω,z)= E t (ω,z)exp(i ρ r )+ E d (ω,z)exp(i σ r ),
cos θ r ' d E t ( ω,z ) dz = E d ( ω,z ),
cos θ r ' d E d ( ω,z ) dz i 2πc K 2 n 0 ( 1 ω 1 ω 0 ) E d ( ω,z )= E t ( ω,z ),
E d (ω,z)=iν(ω,z)exp(iξ(ω,z)) sin ν(ω,z) 2 +ξ(ω,z) 2 ν(ω,z) 2 +ξ (ω,z) 2 E r (ω),
E t ( ω,z )=exp( (ω,z) )×( cos ν (ω,z) 2 (ω,z) 2 -iξ(ω,z) sin ν (ω,z) 2 (ω,z) 2 ν (ω,z) 2 (ω,z) 2 )× E r ( ω ),
η(ω,z)= sin 2 ν(ω,z) 2 +ξ(ω,z) 2 1+ ξ (ω,z) 2 ν (ω,z) 2 .
E d (t,z)= E d ( ω,z)exp(-iωt)dω. E t (t,z)= E t ( ω,z)exp(-iωt)dω.
I d (t,z)= | E d (t,z) | 2 , I t (t,z)= | E t (t,z) | 2 .
Δ t pi =| d υ t d υ d |.
Δ t pi = Δ n eff d c .
Δφ=2π= 2π λ Δn d s .

Metrics