Abstract

Highly-tolerant distributed Bragg reflectors (DBRs) based on the same materials consisting of nanoporous/dense titanium dioxide (TiO2) film pair structures with wide-angle and broadband highly-reflective properties at visible wavelengths are reported. For a high refractive index contrast, the two dense and nanoporous TiO2 film stacks are alternatingly deposited on silicon (Si) substrates by a oblique angle deposition (OAD) method at two vapor flux angles (θα) of 0 and 80° for high and low refractive indices, respectively. For the TiO2 DBRs at a center wavelength (λc) of 540 nm, the maximum level in reflectance (R) band is increased with increasing the number of pairs, exhibiting high R values of > 90% for 5 pairs, and the normalized stop bandwidth (∆λ/λc) of ~17.8% is obtained. At λc = 540 nm, the patterned TiO2 DBR with 5 pairs shows an uniform relative reflectivity over a whole surface of 3 inch-sized Si wafer and a large-scalable fabrication capability with any features. The angle-dependent reflectance characteristics of TiO2 DBR at λc = 540 nm are also studied at incident angles (θinc) of 20-70° for p-, s-, and non-polarized lights in the wavelength region of 350-750 nm, yielding high R values of > 70.4% at θinc values of 20-70° for non-polarized light. By adjusting the λc/4 thicknesses of nanoporous and dense films, for λc = 450, 540, and 680 nm, tunable broadband TiO2 DBRs with high R values of > 90% at wavelengths of 400-800 nm are realized.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
    [CrossRef]
  2. M. Y. Kuo, J. Y. Hsing, T. T. Chiu, C. N. Li, W. T. Kuo, T. S. Lay, and M. H. Shih, “Quantum efficiency enhancement in selectively transparent silicon thin film solar cells by distributed Bragg reflectors,” Opt. Express 20(S6), A828–A835 (2012).
    [CrossRef]
  3. O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
    [CrossRef]
  4. P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem. 19(47), 8920–8927 (2009).
    [CrossRef]
  5. S. J. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1(3), 451–457 (2011).
    [CrossRef]
  6. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
    [CrossRef]
  7. J. W. Leem and J. S. Yu, “Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition,” Opt. Express 20(18), 20576–20581 (2012).
    [CrossRef] [PubMed]
  8. C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films 534, 275–281 (2013).
    [CrossRef]
  9. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express 19(S3), A258–A268 (2011).
    [CrossRef] [PubMed]
  10. B. S. Richards, “Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review,” Prog. Photovolt. Res. Appl. 12(4), 253–281 (2004).
    [CrossRef]
  11. SOPRA, http://www.sopra-sa.com , Accessed 1 November (2013).
  12. Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
    [CrossRef]
  13. K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
    [CrossRef]

2013 (1)

C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films 534, 275–281 (2013).
[CrossRef]

2012 (2)

2011 (2)

2009 (1)

P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem. 19(47), 8920–8927 (2009).
[CrossRef]

2008 (1)

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

2007 (1)

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[CrossRef]

2004 (1)

B. S. Richards, “Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review,” Prog. Photovolt. Res. Appl. 12(4), 253–281 (2004).
[CrossRef]

1999 (1)

K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
[CrossRef]

1997 (1)

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

1995 (1)

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

Banerjee, D.

P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem. 19(47), 8920–8927 (2009).
[CrossRef]

Billard, A.

C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films 534, 275–281 (2013).
[CrossRef]

Blum, O.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

Charles, C.

C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films 534, 275–281 (2013).
[CrossRef]

Chen, K. M.

K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
[CrossRef]

Chiu, T. T.

Choquette, K. D.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Chow, W. W.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Cohen, R. E.

P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem. 19(47), 8920–8927 (2009).
[CrossRef]

Crawford, M. H.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Dawson, L. R.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

Devel, M.

C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films 534, 275–281 (2013).
[CrossRef]

Drummond, T. J.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

Fritz, I. J.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

Hadley, G. R.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Headley, T. J.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

Howard, A. J.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

Hsing, J. Y.

Hwangbo, C. K.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Jang, S. J.

Kim, C. M.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Kim, E. H.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Kim, J. K.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[CrossRef]

Kim, T. G.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Kimerling, L. C.

K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
[CrossRef]

Klem, J. F.

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

Kuo, M. Y.

Kuo, W. T.

Kurt, P.

P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem. 19(47), 8920–8927 (2009).
[CrossRef]

Lay, T. S.

Lear, K. L.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Lee, B. G.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Lee, Y. P.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Lee, Y. T.

Leem, J. W.

Li, C. N.

Lim, D. R.

K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
[CrossRef]

Luan, H. C.

K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
[CrossRef]

Martin, N.

C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films 534, 275–281 (2013).
[CrossRef]

Ollitrault, J.

C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films 534, 275–281 (2013).
[CrossRef]

Park, C. Y.

Park, Y. J.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Richards, B. S.

B. S. Richards, “Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review,” Prog. Photovolt. Res. Appl. 12(4), 253–281 (2004).
[CrossRef]

Rubner, M. F.

P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem. 19(47), 8920–8927 (2009).
[CrossRef]

Schubert, E. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[CrossRef]

Schubert, M. F.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[CrossRef]

Shih, M. H.

Shin, Y. C.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Sobahan, K. M. A.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Song, Y. M.

Sparks, A. W.

K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
[CrossRef]

Wada, K.

K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
[CrossRef]

Xi, J. Q.

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[CrossRef]

Yeo, C. I.

Yu, J. S.

Zhong, Y.

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66(3), 329–331 (1995).
[CrossRef]

M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90(14), 141115 (2007).
[CrossRef]

K. M. Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. Wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett. 75(24), 3805–3807 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

J. Mater. Chem. (1)

P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem. 19(47), 8920–8927 (2009).
[CrossRef]

J. Mater. Res. (1)

Y. Zhong, Y. C. Shin, C. M. Kim, B. G. Lee, E. H. Kim, Y. J. Park, K. M. A. Sobahan, C. K. Hwangbo, Y. P. Lee, and T. G. Kim, “Optical and electrical properties of indium tin oxide thin films with tilted and spiral microstructures prepared by oblique angle deposition,” J. Mater. Res. 23(9), 2500–2505 (2008).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (1)

Prog. Photovolt. Res. Appl. (1)

B. S. Richards, “Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review,” Prog. Photovolt. Res. Appl. 12(4), 253–281 (2004).
[CrossRef]

Thin Solid Films (1)

C. Charles, N. Martin, M. Devel, J. Ollitrault, and A. Billard, “Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition,” Thin Solid Films 534, 275–281 (2013).
[CrossRef]

Other (1)

SOPRA, http://www.sopra-sa.com , Accessed 1 November (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram for the fabrication of DBRs consisting of nanoporous/dense (low-n/high-n) TiO2 film pairs by the OAD method via e-beam evaporation at two incident vapor flux angles (θα) of 0 and 80° and (b) cross-sectional SEM images of the fabricated TiO2 DBRs with 1, 3, and 5 pairs.

Fig. 2
Fig. 2

(a) Measured and (b) calculated reflectance spectra of the nanoporous/dense TiO2 DBRs with different pairs and (c) calculated E-field intensity distributions of the TiO2 DBRs with 1, 3, and 5 pairs for λc = 540 nm at normal incidence. The n and k values of TiO2 films deposited at θα = 0 and 80° and scale-modified simulation model of the TiO2 DBR with 5 pairs used in this simulation are shown in the insets of (a) and (b), respectively.

Fig. 3
Fig. 3

(a) Measured reflectance spectra of the patterned TiO2 DBR with 5 pairs at λc = 540 nm on the 3 inch-sized Si wafer for different points, (b) relative reflectance mapping image of the corresponding sample, and (c) influence of thickness deviation of nanoporous TiO2 film at the λ/4 thickness of 94 nm on the reflectance of TiO2 DBR with 5 pairs at λc = 540 nm. Photographic image of the patterned TiO2 DBR with 5 pairs on the 3 inch Si wafer at λc= 540 nm is shown in the inset of (a).

Fig. 4
Fig. 4

(a) Measured reflectance spectra at θinc = 20-70° and (b) contour plots of variations of the calculated reflectance spectra at θinc = 0-80° for the TiO2 DBR with 5 pairs at λc = 540 nm in (i) p-, (ii) s-, and (iii) non-polarized lights.

Fig. 5
Fig. 5

(a) Measured reflectance spectra of the fabricated TiO2 DBRs with 5 pairs for λc = 450, 540, and 680 nm, (b) contour plot of variations of calculated reflectance spectra of the TiO2 DBR with 5 pairs as functions of λc and wavelength, and (c) photographic image of the corresponding samples at λc = 450, 540, and 680 nm.

Metrics