Abstract

The multiplexing encoding method is proposed and demonstrated for reconstructing colorful images accurately by using single phase-only spatial light modulator (SLM). It will encode the light waves at different wavelengths into one pure-phase hologram at the same time based on the analytic formulas. The three-dimensional (3D) images can be reconstructed clearly when the light waves at different wavelengths are incident into the encoding hologram. Numerical simulations and optical experiments for 2D and 3D colorful images are performed. The results show that the colorful reconstructed images with high quality are achieved successfully. The proposed multiplexing method is a simple and fast encoding approach and the size of the system is small and compact. It is expected to be used for realizing full-color 3D holographic display in future.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
    [CrossRef] [PubMed]
  2. M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9(4), 191–199 (2001).
    [CrossRef] [PubMed]
  3. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
    [PubMed]
  4. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17(23), 20840–20846 (2009).
    [CrossRef] [PubMed]
  5. N. Yoshikawa and T. Yatagai, “Phase optimization of a kinoform by simulated annealing,” Appl. Opt. 33(5), 863–868 (1994).
    [CrossRef] [PubMed]
  6. H. Zheng, T. Tao, L. Dai, and Y. Yu, “Holographic imaging of full-color real-existing three-dimensional objects with computer-generated sequential kinoforms,” Chin. Opt. Lett. 9(4), 040901 (2011).
    [CrossRef]
  7. A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
    [CrossRef] [PubMed]
  8. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt. 52(7), 1404–1412 (2013).
    [CrossRef] [PubMed]
  9. X. Li, Y. Wang, J. Liu, J. Jia, Y. Pan, and J. Xie, “Color holographic display using a phase-only spatial light modulator,” presented at the 10th International Symposium on Display Holography, Hawaii, USA, 25–29 April 2013.
    [CrossRef]
  10. M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
    [CrossRef] [PubMed]
  11. T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
    [CrossRef] [PubMed]
  12. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12(18), 4320–4325 (2004).
    [CrossRef] [PubMed]
  13. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, A. Kolodziejczyk, and M. Sypek, “Extremely simple holographic projection of color images,” Proc. SPIE 8280, 1–6 (2012).
    [CrossRef]
  14. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett. 35(8), 1227–1229 (2010).
    [CrossRef] [PubMed]
  15. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), chap. 2.2.
  16. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [CrossRef] [PubMed]
  17. I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995).
    [CrossRef]
  18. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding Amplitude Information onto Phase-Only Filters,” Appl. Opt. 38(23), 5004–5013 (1999).
    [CrossRef] [PubMed]
  19. R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
    [CrossRef] [PubMed]
  20. K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
    [CrossRef] [PubMed]
  21. N. Ohta and A. R. Robertson, Colorimetry: Fundamentals and Applications (John Wiley & Sons, 2005).

2013 (2)

2012 (3)

2011 (3)

2010 (1)

2009 (3)

2008 (1)

2004 (1)

2001 (1)

1999 (1)

1995 (1)

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995).
[CrossRef]

1994 (1)

Campos, J.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding Amplitude Information onto Phase-Only Filters,” Appl. Opt. 38(23), 5004–5013 (1999).
[CrossRef] [PubMed]

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995).
[CrossRef]

Chen, Y.

Cottrell, D. M.

Dai, L.

Davis, J. A.

Ducin, I.

Fajst, A.

Feurer, T.

Gorecki, C.

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995).
[CrossRef]

Hacker, M.

Hu, Y.

Ichihashi, Y.

Ito, T.

Jia, J.

Jiang, W.

Kakarenko, K.

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, A. Kolodziejczyk, and M. Sypek, “Extremely simple holographic projection of color images,” Proc. SPIE 8280, 1–6 (2012).
[CrossRef]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[CrossRef] [PubMed]

Kolodziejczyk, A.

Li, X.

Liu, J.

Liu, Y.

Makowski, M.

Masuda, N.

Moreno, I.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding Amplitude Information onto Phase-Only Filters,” Appl. Opt. 38(23), 5004–5013 (1999).
[CrossRef] [PubMed]

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995).
[CrossRef]

Nakayama, H.

Niwa, M.

Oikawa, M.

Okano, K.

Pan, Y.

Shi, R.

Shimobaba, T.

Shiraki, A.

Siemion, A.

Stobrawa, G.

Sun, Z.

Suszek, J.

Sypek, M.

Takada, N.

Takahashi, T.

Tao, T.

Wakunami, K.

Wang, Y.

Wu, Z.

Xie, J.

Yamaguchi, M.

Yamashita, H.

Yatagai, T.

Yoda, T.

Yoshikawa, N.

Yu, Y.

Yzuel, M. J.

J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding Amplitude Information onto Phase-Only Filters,” Appl. Opt. 38(23), 5004–5013 (1999).
[CrossRef] [PubMed]

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995).
[CrossRef]

Zhang, B.

Zhang, H.

Zhao, H.

Zhao, Q.

Zheng, H.

Appl. Opt. (5)

Chin. Opt. Lett. (1)

Jpn. J. Appl. Phys. (1)

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995).
[CrossRef]

Opt. Express (9)

M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19(13), 12008–12013 (2011).
[CrossRef] [PubMed]

T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
[CrossRef] [PubMed]

T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12(18), 4320–4325 (2004).
[CrossRef] [PubMed]

A. Shiraki, N. Takada, M. Niwa, Y. Ichihashi, T. Shimobaba, N. Masuda, and T. Ito, “Simplified electroholographic color reconstruction system using graphics processing unit and liquid crystal display projector,” Opt. Express 17(18), 16038–16045 (2009).
[CrossRef] [PubMed]

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
[CrossRef] [PubMed]

M. Hacker, G. Stobrawa, and T. Feurer, “Iterative Fourier transform algorithm for phase-only pulse shaping,” Opt. Express 9(4), 191–199 (2001).
[CrossRef] [PubMed]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
[PubMed]

M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17(23), 20840–20846 (2009).
[CrossRef] [PubMed]

K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, A. Kolodziejczyk, and M. Sypek, “Extremely simple holographic projection of color images,” Proc. SPIE 8280, 1–6 (2012).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), chap. 2.2.

X. Li, Y. Wang, J. Liu, J. Jia, Y. Pan, and J. Xie, “Color holographic display using a phase-only spatial light modulator,” presented at the 10th International Symposium on Display Holography, Hawaii, USA, 25–29 April 2013.
[CrossRef]

N. Ohta and A. R. Robertson, Colorimetry: Fundamentals and Applications (John Wiley & Sons, 2005).

Supplementary Material (1)

» Media 1: MOV (441 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic view of the CGH generation and 3D image reconstruction. (a) CGH calculation process; (b) 3D image reconstruction process.

Fig. 2
Fig. 2

The curves of | K ( x ) | , A ( x ) and the sinc function.

Fig. 3
Fig. 3

Setup of full-color holographic display system: BS is the beam splitter; SLM is the spatial light modulator; PC is the personal computer; L1 and L2 are the Fourier transform lens; d is the distance between the small hole and the optic axis.

Fig. 4
Fig. 4

(a) Car image, (b) Parrot image and (c) Cup and teapot image are the ideal images; (d) Car image, (e) Parrot image and (f) Cup and teapot image are numerical results; (g) Car image, (h) Parrot image and (i) Cup and teapot image are optical experimental results.

Fig. 5
Fig. 5

Simple model for RGB kinoform generation of full color 3D objects.

Fig. 6
Fig. 6

The numerical and optical experimental reconstructed colorful 3D images: (a) and (b) are the numerical reconstructed results; (c) and (d) are the optical experimental results; (a) and (c) are focused on the ‘RMB’ image at 650 mm; (b) and (d) are focused on the ‘YGC’ image at 500 mm.

Fig. 7
Fig. 7

Numerical reconstructed result of magic cube without filtering: (a) 0 items represent the zero orders, 1 items represent the desired first orders, 2 items represent the unwanted first orders, the fuzzy patches represent the higher orders in Eq. (6); (b) The enlarged desired first order.

Fig. 8
Fig. 8

(Media 1) Experimental result of animated display.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

O i (u,v, z ^ p )= o i ( x ^ , y ^ , z ^ p ) exp[j2π (u x ^ + v y ^ )]d x ^ d y ^ ,
H i (x,y, z h )= p { O i (u,v, z ^ p ) exp[ j k i ( z h z ^ p ) 1 ( λ i u) 2 ( λ i v) 2 ] ·exp[j2π(ux+vy)]dudv } · R i (x,y, z h ) = A i (x,y)exp{ j[ φ i (x,y)+ k i xsin θ i ] },
S(x,y)= i=1 3 H i (x,y, z h ) ·exp(j k i ysinψ) = i=1 3 A i (x,y)exp{ j[ φ i (x,y)+ k i xsin θ i + k i ysinψ] } =A(x,y)exp[jφ(x,y)],
H(x,y)=exp[jA(x,y)φ(x,y)] = n= K n (x,y) exp[jnφ(x,y)] = K 0 (x,y)+ K 1 (x,y)exp[jφ(x,y)]+e(x,y),
K n (x,y)=exp{ j[nA(x,y)]π } sin{ π[nA(x,y)] } π[nA(x,y)] .
O ( x , y ) = H ( x , y ) · R ' ( x , y , z h ) = K 0 ( x , y ) i = 1 3 exp [ j k i x sin ( θ i ) ] Z e r o o r d e r s + K 1 ( x , y ) A ( x , y ) i = 1 3 A i ( x , y ) exp { j [ φ i ( x , y ) + k i y sin ψ ] } D e s i r e d f i r s t o r d e r s + K 1 ( x , y ) A ( x , y ) i = 2 , 3 A i ( x , y ) exp { j [ φ i ( x , y ) + k i x sin ( θ i ) + k i y sin ψ + k 1 x sin ( θ 1 ) ] } U n w a n t e d f i r s t o r d e r s o f t h e r e d c h a n n e l + K 1 ( x , y ) A ( x , y ) i = 1 , 3 A i ( x , y ) exp { j [ φ i ( x , y ) + k i x sin ( θ i ) + k i y sin ψ + k 2 x sin ( θ 2 ) ] } U n w a n t e d f i r s t o r d e r s o f t h e g r e e n c h a n n e l + K 1 ( x , y ) A ( x , y ) i = 1 , 2 A i ( x , y ) exp { j [ φ i ( x , y ) + k i x sin ( θ i ) + k i y sin ψ + k 3 x sin ( θ 3 ) ] } U n w a n t e d f i r s t o r d e r s o f t h e b l u e c h a n n e l + E ( x , y ) . T h e h i g h e r o r d e r s

Metrics