Abstract

A scheme for the excitation of slow surface plasmon pulses using photonic interband transition in a metal-insulator-metal (MIM) waveguide is proposed. An investigation the mode transition behavior inside the binary grating confirmed that the proposed concept can be understood in terms of the coupling of symmetric and anti-symmetric plasmonic modes. We observed that, although a binary grating that is optimized for a single frequency can excite slow surface plasmon pulses, it is inadequate for broadband mode conversion. To rectify this, a chirped grating was designed for the demonstration of broadband mode conversion by applying a cascade mode transition with different frequencies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [CrossRef]
  3. K.-Y. Kim, J. Kim, I.-M. Lee, and B. Lee, “Analysis of transverse power flow via surface modes in metamaterial waveguides,” Phys. Rev. A 85(2), 023840 (2012).
    [CrossRef]
  4. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
    [CrossRef] [PubMed]
  5. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  6. M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
    [CrossRef] [PubMed]
  7. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
    [CrossRef] [PubMed]
  8. Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
    [CrossRef] [PubMed]
  9. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  10. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
    [CrossRef] [PubMed]
  11. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  12. A. Yariv, “Couple-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [CrossRef]
  13. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
    [CrossRef]
  14. D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
    [CrossRef] [PubMed]
  15. M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
    [CrossRef] [PubMed]
  16. C. R. Otey, M. L. Povinelli, and S. Fan, “Completely capturing light pulses in a few dynamically tuned microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
    [CrossRef]
  17. C. R. Otey, M. L. Povinelli, and S. Fan, “Capturing light pulses into a pair of coupled photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231109 (2009).
    [CrossRef]
  18. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, 2012).
  19. M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effect of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
    [CrossRef]
  20. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [CrossRef]
  21. H. Kim and B. Lee, “Efficient frequency conversion in slab waveguide by cascaded nonreciprocal interband photonic transitions,” Opt. Lett. 35(19), 3165–3167 (2010).
    [CrossRef] [PubMed]
  22. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
    [CrossRef] [PubMed]

2014 (1)

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

2013 (2)

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[CrossRef] [PubMed]

2012 (4)

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

K.-Y. Kim, J. Kim, I.-M. Lee, and B. Lee, “Analysis of transverse power flow via surface modes in metamaterial waveguides,” Phys. Rev. A 85(2), 023840 (2012).
[CrossRef]

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

2011 (2)

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[CrossRef] [PubMed]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

C. R. Otey, M. L. Povinelli, and S. Fan, “Capturing light pulses into a pair of coupled photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231109 (2009).
[CrossRef]

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effect of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

2008 (2)

2007 (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[CrossRef]

1973 (1)

A. Yariv, “Couple-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effect of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

Atwater, H.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[CrossRef] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Bartoli, F. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Beggs, D. M.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effect of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Bokor, J.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Cabrini, S.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Castellanos Muñoz, M.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Choo, H.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Ding, Y. J.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Eich, M.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Fan, S.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

C. R. Otey, M. L. Povinelli, and S. Fan, “Capturing light pulses into a pair of coupled photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231109 (2009).
[CrossRef]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

C. R. Otey, M. L. Povinelli, and S. Fan, “Completely capturing light pulses in a few dynamically tuned microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
[CrossRef]

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effect of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

Gan, Q.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Gao, Y.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[CrossRef]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Hu, H.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[CrossRef]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[CrossRef] [PubMed]

Jang, M. S.

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[CrossRef] [PubMed]

Ji, D.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Kampfrath, T.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[CrossRef] [PubMed]

Kim, H.

Kim, J.

K.-Y. Kim, J. Kim, I.-M. Lee, and B. Lee, “Analysis of transverse power flow via surface modes in metamaterial waveguides,” Phys. Rev. A 85(2), 023840 (2012).
[CrossRef]

Kim, K.-Y.

K.-Y. Kim, J. Kim, I.-M. Lee, and B. Lee, “Analysis of transverse power flow via surface modes in metamaterial waveguides,” Phys. Rev. A 85(2), 023840 (2012).
[CrossRef]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
[CrossRef] [PubMed]

Kim, M.-K.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Krauss, T. F.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[CrossRef] [PubMed]

Kuipers, L.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[CrossRef] [PubMed]

Lee, B.

Lee, I.-M.

K.-Y. Kim, J. Kim, I.-M. Lee, and B. Lee, “Analysis of transverse power flow via surface modes in metamaterial waveguides,” Phys. Rev. A 85(2), 023840 (2012).
[CrossRef]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18(2), 598–623 (2010).
[CrossRef] [PubMed]

Lee, S.-Y.

Li, J.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Lipson, M.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Liu, K.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Na, H.

O’Faolain, L.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Otey, C. R.

C. R. Otey, M. L. Povinelli, and S. Fan, “Capturing light pulses into a pair of coupled photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231109 (2009).
[CrossRef]

C. R. Otey, M. L. Povinelli, and S. Fan, “Completely capturing light pulses in a few dynamically tuned microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
[CrossRef]

Park, J.

Petrov, A. Y.

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

Povinelli, M. L.

C. R. Otey, M. L. Povinelli, and S. Fan, “Capturing light pulses into a pair of coupled photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231109 (2009).
[CrossRef]

C. R. Otey, M. L. Povinelli, and S. Fan, “Completely capturing light pulses in a few dynamically tuned microcavities,” J. Lightwave Technol. 26(23), 3784–3793 (2008).
[CrossRef]

Rey, I. H.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[CrossRef] [PubMed]

Rotenberg, N.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[CrossRef] [PubMed]

Schuck, P. J.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Seok, T.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Staffaroni, M.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Vezenov, D.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Wagner, K.

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Wu, M. C.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Yablonovich, E.

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Yariv, A.

A. Yariv, “Couple-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

Yu, Z.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Zeng, X.

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. R. Otey, M. L. Povinelli, and S. Fan, “Capturing light pulses into a pair of coupled photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231109 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, “Couple-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Chem. C (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “Search for the ideal plasmonic nanoshell: the effect of surface scattering and alternatives to gold and silver,” J. Phys. Chem. C 113(8), 3041–3045 (2009).
[CrossRef]

Nat. Photonics (3)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

H. Choo, M.-K. Kim, M. Staffaroni, T. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovich, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[CrossRef]

Nature (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

K.-Y. Kim, J. Kim, I.-M. Lee, and B. Lee, “Analysis of transverse power flow via surface modes in metamaterial waveguides,” Phys. Rev. A 85(2), 023840 (2012).
[CrossRef]

Phys. Rev. Lett. (5)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111(3), 033601 (2013).
[CrossRef] [PubMed]

M. S. Jang and H. Atwater, “Plasmonic rainbow trapping structures for light localization and spectrum splitting,” Phys. Rev. Lett. 107(20), 207401 (2011).
[CrossRef] [PubMed]

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[CrossRef] [PubMed]

M. Castellanos Muñoz, A. Y. Petrov, L. O’Faolain, J. Li, T. F. Krauss, and M. Eich, “Optically induced indirect photonic transitions in a slow light photonic crystal waveguide,” Phys. Rev. Lett. 112(5), 053904 (2014).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[CrossRef] [PubMed]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. Gan, Y. Gao, K. Wagner, D. Vezenov, Y. J. Ding, and F. J. Bartoli, “Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings,” Proc. Natl. Acad. Sci. U.S.A. 108(13), 5169–5173 (2011).
[CrossRef] [PubMed]

Sci. Rep. (1)

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow trapping in hyperbolic metamaterial waveguide,” Sci. Rep. 3, 1249 (2013).
[CrossRef] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, 2012).

Supplementary Material (2)

» Media 1: AVI (2938 KB)     
» Media 2: AVI (2962 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the proposed structure. A grating inside an MIM waveguide (w = 50 nm, εd = 12.15) couples symmetric and anti-symmetric modes. It converts symmetric mode pulse of temporal width 200 fs to 4-fold slower anti-symmetric pulse. Waveguide dispersion relation depending on (b) the permittivity of core material and (c) the width of waveguide. Solid and dashed lines represent symmetric and anti-symmetric plasmonic modes respectively.

Fig. 2
Fig. 2

Dispersion relation of the symmetric (black solid) and anti-symmetric (black dashed) modes for MIM waveguide (w = 50 nm, εd = 12.15). Red dash-dotted lines mark the linewidth of the input pulse. The inset shows the shape of the input pulse in the temporal domain.

Fig. 3
Fig. 3

(a) Normalized power flow for the symmetric (blue) and anti-symmetric (red) modes along the z-axis. The solid lines and dotted lines represent the cases for Λ = 159  nm and Λ = 170  nm, respectively. The grating strength is set to 0.4. (b) Normalized output power flow of the anti-symmetric mode as a function of grating period. The length of the grating is adjusted at N opt number of periods for each grating period.

Fig. 4
Fig. 4

(a) Normalized power transmission for a periodic grating. Dashed lines represent the normalized power transmittance spectrum and solid lines represent the output pulse spectra for Gaussian pulse input. (b) H y field distribution after the pulse passed through the binary grating (Media 1). Snapshots of power flow profiles at (c) 200 fs before the peak of pulse enters the grating, and at (d) 80 fs, (e) 280 fs and (f) 600 fs after its entry. Red and blue lines mark anti-symmetric and symmetric modes, respectively.

Fig. 5
Fig. 5

(a) The up-chirped grating structure inside a MIM waveguide. Normalized power flow in the chirped grating at wavelengths of (b) 618 nm, (c) 613 nm and (c) 608 nm, respectively. Red and blue lines mark anti-symmetric mode and symmetric mode, respectively.

Fig. 6
Fig. 6

(a) Normalized power transmission spectrum of chirped grating. Dashed lines represent normalized power transmittance spectra and solid lines represent the output pulse spectra for Gaussian pulse input. (b) H y field distribution after the pulse passed through the chirped grating (Media 2). Snapshots of the power flow profile at (c) −200 fs, (d) 480 fs, (e) 920 fs and (f) 2000 fs. Red and blue lines mark the anti-symmetric mode and symmetric mode, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω ) = 1 ω p 2 ω 2 + i γ ω ,
[ 2 +ε(x) ω 2 c 2 ]U=δε(x,z) ω 2 c 2 U,
U(x,z,t)= a 1 (z) U 1 (x) e i( β 1 zωt) + a 2 (z) U 2 (x) e i( β 2 zωt) .
d a 1 dz =i κ β 1 a 2 e iΔz , d a 2 dz =i κ * β 2 a 1 e iΔz .
| a 1 | 2 = 2 | κ | 2 + β 1 β 2 Δ 2 4 | κ | 2 + β 1 β 2 Δ 2 + 2 | κ | 2 4 | κ | 2 + β 1 β 2 Δ 2 cos( 4 | κ | 2 β 1 β 2 + Δ 2 z ), | a 2 | 2 = β 2 β 1 [ 2 | κ | 2 4 | κ | 2 + β 1 β 2 Δ 2 2 | κ | 2 4 | κ | 2 + β 1 β 2 Δ 2 cos( 4 | κ | 2 β 1 β 2 + Δ 2 z ) ].
2 π Λ n = 2 π Λ n 1 + 0.006 q 0 ,

Metrics