Abstract

We first present a new phenomenon: the quarter-wavelength resonance of an electromagnetic field in planar plasmonic metamaterials consisting of asymmetrically coupled air-slot arrays, which is essential for a monopole resonator. The anti-nodal electric field intensity of the quarter-wavelength fundamental mode is formed by strong charge concentrations at the sharp metallic edges of the crossing position of the air-slots, and the nodal point of the electric field intensity naturally occurs at the other end of the air-slot. By tuning the structural asymmetry, the quarter-wavelength resonances were successfully split from the half-wavelength resonance, experimentally and numerically.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  2. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  4. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
    [CrossRef]
  5. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
    [CrossRef] [PubMed]
  6. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [CrossRef]
  7. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  8. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
    [CrossRef] [PubMed]
  9. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
    [CrossRef] [PubMed]
  10. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q. H. Park, and P. C. M. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14(3), 1253–1259 (2006).
    [CrossRef] [PubMed]
  11. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
    [CrossRef] [PubMed]
  12. B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
    [CrossRef]
  13. V. Schmidt, W. Husinsky, and G. Betz, “Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale,” Phys. Rev. Lett. 85(16), 3516–3519 (2000).
    [CrossRef] [PubMed]
  14. M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
    [CrossRef]
  15. Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
    [CrossRef]
  16. D. Y. Smith, E. Shiles, and M. Inokuti, Handbook of Optical Constant of Solids (Academic, 1985).
  17. H. S. Choi, D. F. P. Pile, S. H. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
    [CrossRef] [PubMed]
  18. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [CrossRef]

2012 (1)

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

2011 (3)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

2009 (1)

2008 (1)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

2007 (1)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

2000 (2)

V. Schmidt, W. Husinsky, and G. Betz, “Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale,” Phys. Rev. Lett. 85(16), 3516–3519 (2000).
[CrossRef] [PubMed]

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1997 (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[CrossRef]

1990 (1)

M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[CrossRef]

Abdelaziz, A.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Alivisatos, A. P.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bartal, G.

Betz, G.

V. Schmidt, W. Husinsky, and G. Betz, “Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale,” Phys. Rev. Lett. 85(16), 3516–3519 (2000).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Brolo, A. G.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Choi, H. S.

Ebbesen, T. W.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Goodman, S.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

Gordon, R.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Grischkowsky, D.

M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[CrossRef]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[CrossRef]

Hentschel, M.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Husinsky, W.

V. Schmidt, W. Husinsky, and G. Betz, “Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale,” Phys. Rev. Lett. 85(16), 3516–3519 (2000).
[CrossRef] [PubMed]

Jeoung, S. C.

Jiang, Z.

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kim, D. S.

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Lee, J. W.

Lezec, H. L.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, M.

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[CrossRef]

Lienau, Ch.

Liu, N.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Nam, S. H.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

O’Carroll, D. M.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

Park, D. J.

Park, Q. H.

Pile, D. F. P.

Planken, P. C. M.

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[CrossRef]

Schmidt, V.

V. Schmidt, W. Husinsky, and G. Betz, “Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale,” Phys. Rev. Lett. 85(16), 3516–3519 (2000).
[CrossRef] [PubMed]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Seo, M. A.

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature 391(6668), 667–669 (1998).
[CrossRef]

van Exter, M.

M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Weiss, T.

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yu, B.

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

Zhang, X.

Zhang, X. C.

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[CrossRef]

Appl. Phys. Lett. (4)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–1356 (1997).
[CrossRef]

B. Yu, S. Goodman, A. Abdelaziz, and D. M. O’Carroll, “Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas,” Appl. Phys. Lett. 101(15), 151106 (2012).
[CrossRef]

M. van Exter and D. Grischkowsky, “Optical and electric properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56(17), 1694–1696 (1990).
[CrossRef]

Z. Jiang, M. Li, and X. C. Zhang, “Dielectric constant measurement of thin films by differential time domain spectroscopy,” Appl. Phys. Lett. 76(22), 3221–3223 (2000).
[CrossRef]

Nano Lett. (2)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (3)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (2)

V. Schmidt, W. Husinsky, and G. Betz, “Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale,” Phys. Rev. Lett. 85(16), 3516–3519 (2000).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Science (1)

N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-Dimensional Plasmon Rulers,” Science 332(6036), 1407–1410 (2011).
[CrossRef] [PubMed]

Other (1)

D. Y. Smith, E. Shiles, and M. Inokuti, Handbook of Optical Constant of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a planar plasmonic metamaterial comprising a unit cell in vertical view. The structure was designed to have a periodical arrangement of asymmetrically coupled air-slots where the angle, θ, between the center air-slot and the side air-slots is 20 degrees. The lengths of the air-slots are varied from 300 to 800 µm for realizing the tunability of each fundamental mode.

Fig. 2
Fig. 2

(a) Microscopic images of the three different structures. (b) Experimental and (c) simulated transmission spectra through the three different structures of the planar metamaterials described in (a), respectively. The red arrows indicate the resonant peaks of the quarter-wavelength fundamental mode.

Fig. 3
Fig. 3

(a) Simulated transmission spectrum through the planar metamaterial composed of the air-slots with the lengths: L1 = 600, L2 = 450, in microns. Simulation results for the quarter- (b)-(e) and half-wavelength fundamental mode (f)-(i). (b) and (f) Intensities of electric near-field distributions on the xy plane. (c) and (g) Intensity profiles of the electric near-field in the cross-section of the lines through the points A and B shown in (b) and the points C and D shown in (g), respectively. The dotted red curves represent the square and the cosine function corresponding to the intensities of the quarter- and half-wavelength fundamental modes, respectively. (d) and (h) The intensities of current density distributions on the xy plane. (e) and (i) Y-axis current density distributions.

Fig. 4
Fig. 4

(a) Spectral positions of the tunable quarter-wavelength resonances (black circles) and almost independent half-wavelength resonances (red squares) on the length L2. The length L1 is set to be the same for all the structures. The dotted black and red curves are plotted from the equations, λ f = 4 L 2 and λ s = 2 L 1 , respectively. (b) Spectral positions of the tunable half-wavelength resonances (red squares) and almost independent half-wavelength resonances (black circles) on the length L1. Unlike (a), the length L2 is set to be the same for all the structures.

Metrics