Abstract

A 3kW liquid-convection-cooled Nd:YAG CW laser resonator with a novel design is developed and demonstrated, in which the straight-through geometry is adopted that the oscillating laser propagates through multiple thin slabs and multiple cooling flow layers in Brewster angle. Using the elastically-supported Nd:YAG single-crystal thin slabs at different doping levels, a multimode laser output with the output power of 3006 W is obtained from the stable cavity at the pump power of 19960 W, corresponding to an optical-optical efficiency of 15.1%, and a slope efficiency of 21.2%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Numerical simulation of 30-kW class liquid-cooled Nd:YAG multi-slab resonator

Xing Fu, Qiang Liu, Peilin Li, Lei Huang, and Mali Gong
Opt. Express 23(14) 18458-18470 (2015)

7kW direct-liquid-cooled side-pumped Nd:YAG multi-disk laser resonator

Ke Wang, Bo Tu, Chunyan Jia, Jianli Shang, Xiangchao An, Yuan Liao, Zhi Xu, Jingwei Guo, Jiayu Yi, Yi Yu, Hua Su, Qingsong Gao, Xiaojun Wang, Wanfa Liu, and Kai Zhang
Opt. Express 24(13) 15012-15020 (2016)

Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd:YLF thin disk laser resonator

Zhibin Ye, Chong Liu, Bo Tu, Ke Wang, Qingsong Gao, Chun Tang, and Zhen Cai
Opt. Express 24(2) 1758-1772 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  2. H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
    [Crossref]
  3. V. Sazegari, M. R. J. Milani, and A. K. Jafari, “Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers,” Appl. Opt. 49(36), 6910–6916 (2010).
    [Crossref] [PubMed]
  4. J. Vetrovec, A. Koumvakalis, R. Shah, and T. Endo, “Development of solid-state disk laser for high-average power,” Proc. SPIE 4968, 54–64 (2003).
    [Crossref]
  5. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett. 26(21), 1672–1674 (2001).
    [Crossref] [PubMed]
  6. A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
    [Crossref]
  7. R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).
    [Crossref]
  8. A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® Laser Program” in Conference on Lasers and Electro-Optics, JThH2 (2010).
    [Crossref]
  9. http://en.wikipedia.org/wiki/High_Energy_Liquid_Laser_Area_Defense_System
  10. P. Li, Q. Liu, X. Fu, and M. Gong, “Large-aperture end-pumped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
    [Crossref]
  11. X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
    [Crossref]
  12. X. Fu, Q. Liu, P. Li, and M. Gong, “Wavefront aberration induced by beam passage through a water-convection-cooled Nd:YAG thin disk,” J. Opt. 15(5), 055704 (2013).
    [Crossref]
  13. P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
    [Crossref]
  14. C. Orth, R. Beach, C. Bibeau, E. Honea, K. Jancaitis, J. Lawson, C. Marshall, R. Sacks, K. Schaffers, J. Skidmore, and S. Sutton, “Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury,” Proc. SPIE 3265, Solid State Lasers VII, 114 (1998).
  15. S. Tidwell, J. Seamans, M. Bowers, and A. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
    [Crossref]
  16. Y. Chen, B. Chen, M. Patel, A. Kar, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab lasers-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004).
    [Crossref]

2013 (4)

P. Li, Q. Liu, X. Fu, and M. Gong, “Large-aperture end-pumped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Wavefront aberration induced by beam passage through a water-convection-cooled Nd:YAG thin disk,” J. Opt. 15(5), 055704 (2013).
[Crossref]

P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
[Crossref]

2010 (1)

2009 (1)

R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).
[Crossref]

2007 (1)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

2005 (2)

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[Crossref]

2004 (1)

Y. Chen, B. Chen, M. Patel, A. Kar, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab lasers-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004).
[Crossref]

2003 (1)

J. Vetrovec, A. Koumvakalis, R. Shah, and T. Endo, “Development of solid-state disk laser for high-average power,” Proc. SPIE 4968, 54–64 (2003).
[Crossref]

2001 (1)

1992 (1)

S. Tidwell, J. Seamans, M. Bowers, and A. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Bass, M.

Y. Chen, B. Chen, M. Patel, A. Kar, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab lasers-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004).
[Crossref]

Bowers, M.

S. Tidwell, J. Seamans, M. Bowers, and A. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Brockmann, R.

R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).
[Crossref]

Bruesselbach, H.

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

Chen, B.

Y. Chen, B. Chen, M. Patel, A. Kar, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab lasers-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004).
[Crossref]

Chen, Y.

Y. Chen, B. Chen, M. Patel, A. Kar, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab lasers-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004).
[Crossref]

Cousins, A.

S. Tidwell, J. Seamans, M. Bowers, and A. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Damzen, M. J.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[Crossref]

Endo, T.

J. Vetrovec, A. Koumvakalis, R. Shah, and T. Endo, “Development of solid-state disk laser for high-average power,” Proc. SPIE 4968, 54–64 (2003).
[Crossref]

Fu, X.

P. Li, Q. Liu, X. Fu, and M. Gong, “Large-aperture end-pumped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Wavefront aberration induced by beam passage through a water-convection-cooled Nd:YAG thin disk,” J. Opt. 15(5), 055704 (2013).
[Crossref]

P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
[Crossref]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Gong, M.

X. Fu, Q. Liu, P. Li, and M. Gong, “Wavefront aberration induced by beam passage through a water-convection-cooled Nd:YAG thin disk,” J. Opt. 15(5), 055704 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
[Crossref]

P. Li, Q. Liu, X. Fu, and M. Gong, “Large-aperture end-pumped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
[Crossref]

P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
[Crossref]

Goodno, G. D.

Harkenrider, J.

Havrilla, D.

R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).
[Crossref]

Injeyan, H.

Jafari, A. K.

Kar, A.

Y. Chen, B. Chen, M. Patel, A. Kar, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab lasers-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004).
[Crossref]

Koumvakalis, A.

J. Vetrovec, A. Koumvakalis, R. Shah, and T. Endo, “Development of solid-state disk laser for high-average power,” Proc. SPIE 4968, 54–64 (2003).
[Crossref]

Li, P.

P. Li, Q. Liu, X. Fu, and M. Gong, “Large-aperture end-pumped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
[Crossref]

P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Wavefront aberration induced by beam passage through a water-convection-cooled Nd:YAG thin disk,” J. Opt. 15(5), 055704 (2013).
[Crossref]

Liu, Q.

P. Li, X. Fu, Q. Liu, and M. Gong, “Analysis of wavefront aberration induced by turbulent flow field in liquid-convection-cooled disk laser,” J. Opt. Soc. Am. B 30(8), 2161–2167 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Wavefront aberration induced by beam passage through a water-convection-cooled Nd:YAG thin disk,” J. Opt. 15(5), 055704 (2013).
[Crossref]

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
[Crossref]

P. Li, Q. Liu, X. Fu, and M. Gong, “Large-aperture end-pumped Nd:YAG thin-disk laser directly cooled by liquid,” Chin. Opt. Lett. 11(4), 041408 (2013).
[Crossref]

Milani, M. R. J.

Minassian, A.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[Crossref]

Palese, S.

Patel, M.

Y. Chen, B. Chen, M. Patel, A. Kar, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab lasers-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004).
[Crossref]

Sazegari, V.

Seamans, J.

S. Tidwell, J. Seamans, M. Bowers, and A. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Shah, R.

J. Vetrovec, A. Koumvakalis, R. Shah, and T. Endo, “Development of solid-state disk laser for high-average power,” Proc. SPIE 4968, 54–64 (2003).
[Crossref]

Smith, G.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[Crossref]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Sumida, D. S.

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

Thompson, B. A.

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[Crossref]

Tidwell, S.

S. Tidwell, J. Seamans, M. Bowers, and A. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Vetrovec, J.

J. Vetrovec, A. Koumvakalis, R. Shah, and T. Endo, “Development of solid-state disk laser for high-average power,” Proc. SPIE 4968, 54–64 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

X. Fu, Q. Liu, P. Li, and M. Gong, “Direct-liquid-cooled Nd:YAG thin disk laser oscillator,” Appl. Phys. B 111(3), 517–521 (2013).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (2)

S. Tidwell, J. Seamans, M. Bowers, and A. Cousins, “Scaling CW diode-end-pumped Nd:YAG lasers to high average powers,” IEEE J. Quantum Electron. 28(4), 997–1009 (1992).
[Crossref]

Y. Chen, B. Chen, M. Patel, A. Kar, and M. Bass, “Calculation of thermal-gradient-induced stress birefringence in slab lasers-II,” IEEE J. Quantum Electron. 40(7), 917–928 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11(3), 600–603 (2005).
[Crossref]

A. Minassian, B. A. Thompson, G. Smith, and M. J. Damzen, “High-power scaling (>100 W) of a diode-pumped TEM00 Nd:GdVO4 laser system,” IEEE J. Sel. Top. Quantum Electron. 11(3), 621–625 (2005).
[Crossref]

J. Opt. (1)

X. Fu, Q. Liu, P. Li, and M. Gong, “Wavefront aberration induced by beam passage through a water-convection-cooled Nd:YAG thin disk,” J. Opt. 15(5), 055704 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Proc. SPIE (2)

R. Brockmann and D. Havrilla, “Disk laser: a new generation of industrial lasers,” Proc. SPIE 7193, 71931R (2009).
[Crossref]

J. Vetrovec, A. Koumvakalis, R. Shah, and T. Endo, “Development of solid-state disk laser for high-average power,” Proc. SPIE 4968, 54–64 (2003).
[Crossref]

Other (3)

A. Mandl and D. E. Klimek, “Textron’s J-HPSSL 100 kW ThinZag® Laser Program” in Conference on Lasers and Electro-Optics, JThH2 (2010).
[Crossref]

http://en.wikipedia.org/wiki/High_Energy_Liquid_Laser_Area_Defense_System

C. Orth, R. Beach, C. Bibeau, E. Honea, K. Jancaitis, J. Lawson, C. Marshall, R. Sacks, K. Schaffers, J. Skidmore, and S. Sutton, “Design modeling of the 100-J diode-pumped solid-state laser for Project Mercury,” Proc. SPIE 3265, Solid State Lasers VII, 114 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Configuration of large-aperture multi-slab laser oscillator.

Fig. 2
Fig. 2

Simulated pump intensity distribution at the pump surface.

Fig. 3
Fig. 3

Absorption coefficient of heavy water with different deuteration degree, compared with the deionized water.

Fig. 4
Fig. 4

Flow optimization: (a) flow rate homogenizer; (b) flow rate distribution at the thin slab.

Fig. 5
Fig. 5

Beam path through the gain medium module (fused silica window, heavy water layers and Nd:YAG thin slabs).

Fig. 6
Fig. 6

The doping concentration and pump absorption efficiency of the eleven slabs.

Fig. 7
Fig. 7

Depolarization loss after 1 piece of slab: (a) rigidly fixed slab; (b) elastically held slab.

Fig. 8
Fig. 8

Measured pump light distribution of one stack.

Fig. 9
Fig. 9

CW output power as a function of the pump power.

Fig. 10
Fig. 10

CW output power with different output coupling (Rcurv = 500 mm).

Fig. 11
Fig. 11

CW output power with different curvature radius of the high reflector (R = 90%).

Fig. 12
Fig. 12

CW output power with different LD arrays.

Fig. 13
Fig. 13

The simulated pump light profile at the pump surface: (a) 30 arrays pumping; (b) 16 arrays pumping.

Fig. 14
Fig. 14

CW output power with different thickness of cooling flow layer.

Fig. 15
Fig. 15

Near-field profile of the laser output.

Tables (1)

Tables Icon

Table 1 Comparison between the Rigidly Fixed Slab and Elastically Held Slab in Terms of Thermal Effect and Depolarization Loss

Metrics