Abstract

The wavelength selective linear absorption in communication C-band is investigated in CMOS-processed PECVD silicon nitride rings. In the overcoupled region, the linear absorption loss lowers the on-resonance transmission of a ring resonator and increases its overall quality factor. Both the linear absorption and ring quality factor are maximized near 1520 nm. The direct heating by phonon absorption leads to thermal optical bistable switching in PECVD silicon nitride based microring resonators. We calibrate the linear absorption rate in the microring resonator by measuring its transmission lineshape at different laser power levels, consistent with coupled mode theory calculations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
    [CrossRef]
  2. C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
    [CrossRef]
  3. J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
    [CrossRef]
  4. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
    [CrossRef]
  5. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon. 7(8), 597–607 (2013).
    [CrossRef]
  6. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [CrossRef] [PubMed]
  7. J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22(4), 3797–3810 (2014).
    [CrossRef] [PubMed]
  8. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  9. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [CrossRef] [PubMed]
  10. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
    [CrossRef]
  11. C.H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26(13), 2621–2624 (1987).
  12. J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
    [PubMed]
  13. Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
    [CrossRef]
  14. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistgable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
    [CrossRef]
  15. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
    [CrossRef] [PubMed]
  16. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18(25), 26695–26703 (2010).
    [CrossRef] [PubMed]
  17. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010).
    [CrossRef]
  18. S.-W. Huang, J. F. McMillan, J. Yang, A. Matsko, H. Zhou, M. Yu, D.-L. Kwong, L. Maleki, C. W. Wong, “Direct generation of 74-fs mode-locking from on-chip normal dispersion frequency combs,” submitted under review (2014).
  19. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
    [CrossRef] [PubMed]
  20. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
    [CrossRef] [PubMed]
  21. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
    [CrossRef]
  22. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  23. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
    [CrossRef] [PubMed]
  24. Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014).
    [CrossRef]
  25. K. Vu, K. Yan, Z. Jin, X. Gai, D.-Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett. 38(11), 1766–1768 (2013).
    [CrossRef] [PubMed]
  26. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
    [CrossRef] [PubMed]
  27. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995).
    [CrossRef]
  28. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [CrossRef] [PubMed]
  29. D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989).
    [CrossRef] [PubMed]
  30. J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004).
    [CrossRef]
  31. D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 4(3), 480–485 (1986).
    [CrossRef]
  32. N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981).
    [CrossRef]
  33. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
    [CrossRef]
  34. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
    [CrossRef] [PubMed]
  35. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
    [CrossRef] [PubMed]
  36. A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
    [CrossRef]
  37. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  38. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
    [CrossRef] [PubMed]
  39. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
    [CrossRef] [PubMed]
  40. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013).
    [CrossRef] [PubMed]
  41. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal micro-resonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [CrossRef]
  42. A. Arbabi and L. L. Goddard, “Dynamics of self-heating in microring resonators,” IEEE Photon. J. 4(5), 1702–1711 (2012).
    [CrossRef]

2014

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014).
[CrossRef]

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22(4), 3797–3810 (2014).
[CrossRef] [PubMed]

2013

2012

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[CrossRef] [PubMed]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
[CrossRef]

A. Arbabi and L. L. Goddard, “Dynamics of self-heating in microring resonators,” IEEE Photon. J. 4(5), 1702–1711 (2012).
[CrossRef]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
[CrossRef] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
[CrossRef] [PubMed]

2010

2009

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

2008

2007

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

2005

2004

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
[CrossRef] [PubMed]

J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004).
[CrossRef]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

2003

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

2002

J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

1995

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995).
[CrossRef]

1989

D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989).
[CrossRef] [PubMed]

1987

1986

D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 4(3), 480–485 (1986).
[CrossRef]

1981

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981).
[CrossRef]

Agarwal, A.

Aimez, V.

Alic, N.

Almeida, V. R.

Alonso, J. C.

J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004).
[CrossRef]

Arbabi, A.

Arnold, C. B.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014).
[CrossRef]

Baker, C.

Barclay, P. E.

Beausoleil, R. G.

Bolivar, P. H.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
[CrossRef] [PubMed]

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Brown, S. W.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995).
[CrossRef]

Bulla, D.

Canciamilla, A.

Carlie, N.

Carmon, T.

Charette, P.

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Choi, D.-Y.

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
[CrossRef]

Combrié, S.

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Davidson, B. N.

D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989).
[CrossRef] [PubMed]

De Rossi, A.

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Debbarma, S.

Deshpande, S. V.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995).
[CrossRef]

Ducci, S.

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
[CrossRef]

Eggleton, B. J.

Fainman, Y.

Fandiño, J.

J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004).
[CrossRef]

Fattal, D. A.

Favero, I.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
[CrossRef]

Foster, A. C.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010).
[CrossRef]

Fridman, M.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[CrossRef] [PubMed]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon. 7(8), 597–607 (2013).
[CrossRef]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010).
[CrossRef]

Gai, X.

Goddard, L. L.

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Gorin, A.

Grillet, C.

Grondin, E.

Gu, T.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

Gulari, E.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995).
[CrossRef]

Henry, C.H.

Henschel, W.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
[CrossRef] [PubMed]

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Hu, J.

Husko, C.

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Ikeda, K.

Jaouad, A.

Jin, Z.

Katz, L. E.

Kazarinov, R. F.

Kimerling, L.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014).
[CrossRef]

Kimerling, L. C.

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Kira, G.

Kuramochi, E.

Kurz, H.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004).
[CrossRef] [PubMed]

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Kuzucu, O.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[CrossRef] [PubMed]

Kwong, D. L.

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
[CrossRef] [PubMed]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Kwong, D.-L.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

Lee, H. J.

Lee, M. W.

Leo, G.

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010).
[CrossRef]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

Lin, P. T.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014).
[CrossRef]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon. 7(8), 597–607 (2013).
[CrossRef]

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010).
[CrossRef]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
[CrossRef]

Lo, G. Q.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
[CrossRef] [PubMed]

Lo, G.-Q.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

Loncar, M.

J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Lucovsky, G.

D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989).
[CrossRef] [PubMed]

D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 4(3), 480–485 (1986).
[CrossRef]

Luo, L.-W.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[CrossRef] [PubMed]

Luther-Davies, B.

Luzinov, I.

Mabuchi, H.

J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Madden, S.

Mägi, E.

Mao, S. C.

McMillan, J. F.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

Melloni, A.

Mitsugi, S.

Monat, C.

Monster, M.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon. 7(8), 597–607 (2013).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
[CrossRef]

Morichetti, F.

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon. 7(8), 597–607 (2013).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
[CrossRef]

Musgraves, J. D.

Narayanan, K.

Niehusmann, J.

Notomi, M.

Orlowsky, K. J.

Ortiz, A.

J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004).
[CrossRef]

Painter, O.

Parrain, D.

Pelc, J. S.

Petrone, N.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

Preble, S. F.

Prochazka, S.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981).
[CrossRef]

Raineri, F.

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Rand, S. C.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995).
[CrossRef]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
[CrossRef]

Richardson, K.

Rivoire, K.

Rodríguez-Fernandez, L.

J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004).
[CrossRef]

Rokhsari, H.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

Santori, C.

Saperstein, R. E.

Scherer, A.

J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Shinya, A.

Singh, V.

Solin, S. A.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981).
[CrossRef]

Spillane, S. M.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Srinivasan, K.

Stapfner, S.

Sun, X. W.

Tanabe, T.

Tao, S. H.

Tomljenovic-Hanic, S.

Tran, Q. V.

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

Tsu, D. V.

D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989).
[CrossRef] [PubMed]

D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 4(3), 480–485 (1986).
[CrossRef]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010).
[CrossRef]

Vahala, K.

Vahala, K. J.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

van der Zande, A.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

Vo, S.

Vorckel, A.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Vörckel, A.

Vu, K.

Vuckovic, J.

J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Wada, N.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981).
[CrossRef]

Wahlbrink, T.

Wang, K.-Y.

Weig, E. M.

Wen, Y. H.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[CrossRef] [PubMed]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Wong, C. W.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Wong, J.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981).
[CrossRef]

Xu, Y. L.

Yan, K.

Yang, J.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

Yang, L.

Yang, X.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

Yu, M.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

Yu, M. B.

Zang, Z.-G.

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
[CrossRef]

Zdyrko, B.

Zha, Y.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014).
[CrossRef]

Zhang, Y.-J.

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
[CrossRef]

Zheng, J.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

ACS Photon.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[CrossRef]

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014).
[CrossRef]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004).
[CrossRef]

IEEE Photon. J.

A. Arbabi and L. L. Goddard, “Dynamics of self-heating in microring resonators,” IEEE Photon. J. 4(5), 1702–1711 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

J. Appl. Phys.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995).
[CrossRef]

J. Mod. Opt.

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012).
[CrossRef]

J. Non-Cryst. Solids

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981).
[CrossRef]

J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films

D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 4(3), 480–485 (1986).
[CrossRef]

J. Vac. Sci. Technol.

J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004).
[CrossRef]

Nat. Photon.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010).
[CrossRef]

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012).
[CrossRef]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon. 7(8), 597–607 (2013).
[CrossRef]

Nature

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[CrossRef] [PubMed]

Opt. Express

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[CrossRef] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal micro-resonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistgable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005).
[CrossRef]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[CrossRef] [PubMed]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
[CrossRef] [PubMed]

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
[CrossRef] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009).
[CrossRef] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
[CrossRef] [PubMed]

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18(25), 26695–26703 (2010).
[CrossRef] [PubMed]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010).
[CrossRef] [PubMed]

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012).
[CrossRef] [PubMed]

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22(4), 3797–3810 (2014).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B Condens. Matter

D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002).
[PubMed]

Phys. Rev. Lett.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012).
[CrossRef] [PubMed]

Other

S.-W. Huang, J. F. McMillan, J. Yang, A. Matsko, H. Zhou, M. Yu, D.-L. Kwong, L. Maleki, C. W. Wong, “Direct generation of 74-fs mode-locking from on-chip normal dispersion frequency combs,” submitted under review (2014).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure and linear optical properties of the device (a) Silicon nitride device layout. Optical image of top view of the ring, where the dashed line shows the cleaved position for the SEM image. Inset (up right): Cross section and the optical profile of the TE mode. Inset (bottom left): SEM image of the ring-waveguide coupling part. Inset (bottom right): 650nm PECVD silicon nitride is sandwiched between the PECVD silicon oxide up cladding layer and the thermal oxide lower cladding layer. Scale bar: 1μm. (b) Output spectrum of TE and TM polarized input with 0dBm input power.

Fig. 2
Fig. 2

Wavelength selective absorption and ring quality factors (a) Linear absorption of the PECVD grown silicon nitride thin film, in the range of mid- and near-IR. (b) FTIR measured absorption versus phonon energy of PECVD silicon nitride thin film (gray dots) and the absorption of a 25 mm long SiN waveguide versus photon energy from tunable laser (black solid line). Wavelength dependent linear propagation loss is maximized near 1520 nm. The absorption peak is at 0.816 eV with FWHM of 20 meV. Inset: schematics of incident light direction for waveguide and FTIR measurement. (c) Normalized transmission of ring resonator of 70 μm radius (blue) and 6.7 mm long waveguide (black). Inset: On-resonance transmission versus intracavity field transmission (1-α(λ)L). The blue crosses are experimental data. Red solid line and blue dashed line are theoretical predictions for over-coupled and under-coupled regions respectively. (d) Linear loss dependent total quality factors. Experimental results are directly derived from fitting the ring resonances in (c), and theoretical predictions are given by Eq. (2).

Fig. 3
Fig. 3

Thermal nonlinearity in the microring resonances by molecular absorption (a) The transmission spectrum with input power at 20 μW for linear characterization. The dotted grey curve, solid blue curve, and the grey dashed curve are CMT simulation results with linear absorption rate of 1/4 ns, 1/0.4 ns and 1/0.04 ns respectively. The crosses are the experimental data. (b) The transmission spectrum with input power at 156 μW. (c) Optical transmission lineshape at different optical input powers (20, 60, 130, 200 and 260 μW). The dashed curves are experimental data and the solid curves are coupled mode theory simulations. (d) Cavity resonance shift versus the input power at defects absorption peak (80 pm/mW near 1520 nm) and away of the absorption peak (20 pm/mW near 1560 nm). Both TE (blue) and TM (red) polarizations are illustrated. Inset: measured hysteresis loop of the output versus input power near the 1523 nm resonance with TE polarization. The laser-resonance detunings are set at 33 and 34 pm for the blue and red lines respectively.

Fig. 4
Fig. 4

Thermal optical bistability near the molecular vibration peak (a) Output power of pump and probe versus input pump power. The pump is 3.06 (red) to mode resonant at 1540.065 nm and the probes are set at 2.81 (light blue), 2.87 (navy), and 2.93 (black) to the mode resonant at 1542.962 nm Inset: The probe laser detuning to the resonance versus the pump power dropped into the resonator, driving the resonance to the correspondent probe laser wavelength. (b) Time domain self-heating dynamics to the step function input. The laser intensity step-function turns on to 1 mW. The laser-cavity detunings are −2 pm (blue) and 2 pm (red) respectively. The dots are experimental data and the lines are the exponential curve fitting. The lifetime is about 150 μs for both cases. Inset: Thermal switching dynamics for negative laser-cavity detuning (blue arrow) and positive detuning (red arrow), as the cold cavity resonance (solid grey line) red-shifted by thermal heating (dashed grey line).

Tables (1)

Tables Icon

Table 1 Fixed parameters used in the CMT model

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T res = [ tα( λ res ) 1α( λ res )t ] 2

Metrics