Abstract

Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [CrossRef]
  2. J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: Technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
    [CrossRef]
  3. E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open Issues,” J. Lightwave Technol. 30(4), 572–582 (2012).
    [CrossRef]
  4. B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
    [CrossRef]
  5. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
    [CrossRef] [PubMed]
  6. C. M. Caves, “Quantum limits on noise in linear-amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982).
    [CrossRef]
  7. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
    [CrossRef]
  8. B. Corcoran, S. L. I. Olsson, C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Phase-sensitive optical pre-amplifier implemented in an 80 km DQPSK link,” Optical Fiber Communications Conference2012 Technical Digest, paper PDP5A.
    [CrossRef]
  9. T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” 39th European Conference and Exhibition on Optical Communication 2013, paper We3A2.
    [CrossRef]
  10. K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
    [CrossRef]
  11. M. Asobe, T. Umeki, and O. Tadanaga, “Phase sensitive amplification with noise figure below the 3 dB quantum limit using CW pumped PPLN waveguide,” Opt. Express 20(12), 13164–13172 (2012).
    [CrossRef] [PubMed]
  12. Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
    [CrossRef]
  13. M. Vasilyev, “Distributed phase-sensitive amplification,” Opt. Express 13(19), 7563–7571 (2005).
    [CrossRef] [PubMed]
  14. T. Richter, B. Corcoran, S. L. I. Olsson, C. Lundstrom, M. Karlsson, C. Schubert, and P. A. Andrekson, “Experimental characterization of a phase-sensitive four-mode fiber-optic parametric amplifier,” 38th European Conference and Exhibition on Optical Communication 2012, paper Th1F1.
    [CrossRef]
  15. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Broadband parametric multicasting via four-mode phase-sensitive interaction,” Opt. Express 20(17), 19363–19373 (2012).
    [CrossRef] [PubMed]
  16. C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12(21), 5037–5066 (2004).
    [CrossRef] [PubMed]
  17. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27(13), 1138–1140 (2002).
    [CrossRef] [PubMed]
  18. S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
    [CrossRef]
  19. L. Lan, T. Zhi, A. O. J. Wiberg, E. Myslivets, B. Kuo, N. Alic, and S. Radic, “Digital Phase-locked loop-stabilized four-mode phase-sensitive parametric multicasting,” 39th European Conference and Exhibition on Optical Communication 2013, paper We3A4.
    [CrossRef]
  20. Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
    [CrossRef]
  21. Z. Tong, A. O. J. Wiberg, E. Myslivets, C. K. Huynh, B. P. P. Kuo, N. Alic, and S. Radic, “Noise performance of phase-insensitive frequency multicasting in parametric mixer with finite dispersion,” Opt. Express 21(15), 17659–17669 (2013).
    [CrossRef] [PubMed]
  22. E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
    [CrossRef]
  23. T. Sakamoto, G. W. Lu, A. Chiba, and T. Kawanishi, “Digital optical phase locked loop for real-time coherent demodulation of multilevel PSK/QAM,” Optical Fiber Communications Conference2010 Technical Digest, paper OMS5.
    [CrossRef]
  24. Y. X. Ma, P. Zhou, X. L. Wang, H. T. Ma, X. J. Xu, L. Si, Z. J. Liu, and Y. J. Zhao, “Coherent beam combination with single frequency dithering technique,” Opt. Lett. 35(9), 1308–1310 (2010).
    [CrossRef] [PubMed]

2013

2012

2011

B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
[CrossRef]

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

2010

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Y. X. Ma, P. Zhou, X. L. Wang, H. T. Ma, X. J. Xu, L. Si, Z. J. Liu, and Y. J. Zhao, “Coherent beam combination with single frequency dithering technique,” Opt. Lett. 35(9), 1308–1310 (2010).
[CrossRef] [PubMed]

2009

E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

2008

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

2005

2004

2003

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[CrossRef]

2002

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27(13), 1138–1140 (2002).
[CrossRef] [PubMed]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

2000

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: Technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[CrossRef]

1998

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[CrossRef]

1982

C. M. Caves, “Quantum limits on noise in linear-amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982).
[CrossRef]

Alic, N.

Andrekson, P. A.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Aparicio, J. M.

E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Asobe, M.

Blessing, D. J.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Bogris, A.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Bres, C. S.

E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Caves, C. M.

C. M. Caves, “Quantum limits on noise in linear-amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982).
[CrossRef]

Chraplyvy, A. R.

Ciaramella, E.

Croussore, K.

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

Dasgupta, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Ellis, A. D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Elmirghani, J. M. H.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: Technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[CrossRef]

Futami, F.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[CrossRef]

Gruner-Nielsen, L.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Herstrom, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Huynh, C. K.

Jakobsen, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Kakande, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Karlsson, M.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Kikuchi, K.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[CrossRef]

Kuo, B. P. P.

Li, G. F.

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Liu, Z. J.

Lundstrom, C.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Ma, H. T.

Ma, Y. X.

McKinstrie, C. J.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12(21), 5037–5066 (2004).
[CrossRef] [PubMed]

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27(13), 1138–1140 (2002).
[CrossRef] [PubMed]

Moro, S.

E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Mouftah, H. T.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: Technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[CrossRef]

Myslivets, E.

O Gorman, J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Parmigiani, F.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Petropoulos, P.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Phelan, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Puttnam, B. J.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Radic, S.

Z. Tong, A. O. J. Wiberg, E. Myslivets, C. K. Huynh, B. P. P. Kuo, N. Alic, and S. Radic, “Noise performance of phase-insensitive frequency multicasting in parametric mixer with finite dispersion,” Opt. Express 21(15), 17659–17669 (2013).
[CrossRef] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Broadband parametric multicasting via four-mode phase-sensitive interaction,” Opt. Express 20(17), 19363–19373 (2012).
[CrossRef] [PubMed]

E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20(3), 3331–3344 (2012).
[CrossRef] [PubMed]

B. P. P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightwave Technol. 29(23), 3515–3522 (2011).
[CrossRef]

E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

C. J. McKinstrie, S. Radic, and M. G. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12(21), 5037–5066 (2004).
[CrossRef] [PubMed]

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27(13), 1138–1140 (2002).
[CrossRef] [PubMed]

Raymer, M. G.

Richardson, D. J.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Si, L.

Sjodin, M.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Slavik, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Sygletos, S.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Syvridis, D.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Tadanaga, O.

Takushima, Y.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[CrossRef]

Tipsuwannakul, E.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Toda, H.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Tong, Z.

Umeki, T.

Vasilyev, M.

Wang, X. L.

Weerasuriya, R.

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Wiberg, A. O. J.

Xu, X. J.

Zhao, Y. J.

Zhou, P.

IEEE Commun. Mag.

J. M. H. Elmirghani and H. T. Mouftah, “All-optical wavelength conversion: Technologies and applications in DWDM networks,” IEEE Commun. Mag. 38(3), 86–92 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

E. Myslivets, C. Lundstrom, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photon. Technol. Lett. 21(24), 1807–1809 (2009).
[CrossRef]

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4(10), 690–695 (2010).
[CrossRef]

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Gruner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[CrossRef]

Opt. Lett.

Phys. Rev. D Part. Fields

C. M. Caves, “Quantum limits on noise in linear-amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982).
[CrossRef]

Other

B. Corcoran, S. L. I. Olsson, C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Phase-sensitive optical pre-amplifier implemented in an 80 km DQPSK link,” Optical Fiber Communications Conference2012 Technical Digest, paper PDP5A.
[CrossRef]

T. Richter, R. Elschner, and C. Schubert, “QAM phase-regeneration in a phase-sensitive fiber-amplifier,” 39th European Conference and Exhibition on Optical Communication 2013, paper We3A2.
[CrossRef]

T. Richter, B. Corcoran, S. L. I. Olsson, C. Lundstrom, M. Karlsson, C. Schubert, and P. A. Andrekson, “Experimental characterization of a phase-sensitive four-mode fiber-optic parametric amplifier,” 38th European Conference and Exhibition on Optical Communication 2012, paper Th1F1.
[CrossRef]

L. Lan, T. Zhi, A. O. J. Wiberg, E. Myslivets, B. Kuo, N. Alic, and S. Radic, “Digital Phase-locked loop-stabilized four-mode phase-sensitive parametric multicasting,” 39th European Conference and Exhibition on Optical Communication 2013, paper We3A4.
[CrossRef]

T. Sakamoto, G. W. Lu, A. Chiba, and T. Kawanishi, “Digital optical phase locked loop for real-time coherent demodulation of multilevel PSK/QAM,” Optical Fiber Communications Conference2010 Technical Digest, paper OMS5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical wavelength configuration for PS processes. P1, P2: pumps; S1, S2, S3, S4: signals. (a) Nondegenerate dual-pump driven parametric process. In the phase insensitive case, only S2 (solid line) is the input signal, whereas S1/S3/S4 (dashed lines) are the newly generated idlers from modulation instability (MI), phase conjugation (PC) and Bragg scattering (BS), respectively. In the 4MPS case, S1/S2/S3/S4 are all present with two pumps. (b) Degenerate (left) and nondegenerate (right) one mode parametric amplification, (c) Two mode parametric process, including MI, PC and BS.

Fig. 2
Fig. 2

4MPS multicasting simulated spectra. (a) input phases of P1/P2/S1/S2/S3/S4: 0°, (b) input phase, P1: 15°, P2: 60°, S1: 10°, S2: 20°, S3: 55°, S4: 65°.

Fig. 3
Fig. 3

The simulated PS-to-PI G/CE improvements response of the central 24 signal copies for individual input (i.e. S1/S2/S3/S4) phase sweep. (a) phase of S1 1546.9 nm was swept from 0° to 360°, (b) phase of S2 1548.5 nm was swept from 0° to 360°, (c) phase of S3 1550.1 nm was swept from 0° to 360° (d) phase of S4 1551.7 nm was swept from 0° to 360°. S1/S2/S3/S4 corresponding outputs are marked as blue, green, magenta and red.

Fig. 4
Fig. 4

Experimental configuration including four partitions: coherent wave generation, pump recovery, parametric mixer and DPLL. (a) Part I output, an optical comb with 5-nm 10-dB-bandwidth.

Fig. 5
Fig. 5

DPLL instantaneous performance. (a) Three monitored optical channels’ power fluctuations (b) The DC driving signals on two PZTs.

Fig. 6
Fig. 6

Experimental multicasting output (i.e. central 24 copies) power response by changing signal phase. (a) S1, 1546.9 nm phase is swept over 360° (b) S2, 1548.5 nm phase is swept over 360°. (c) S3, 1550.1 nm phase is swept over 360°. (d) S4, 1551.7 nm phase is swept over 360°.

Fig. 7
Fig. 7

Experimental spectra comparison between the PS and the PI multicasting. (a) whole spectrum. (b) a zoom-in view.

Fig. 8
Fig. 8

The signal power spectra with one, two and three monitored channels. Red curve: three monitored channels, blue curves: two monitored channels, black curves: one monitored channel

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S 2_out = μ 1 S 1 * + μ 2 S 2 + μ 3 S 3 * + μ 4 S 4
θ s1 =2 θ p1 θ s2 +2mπ
θ s3 = θ p1 + θ p2 θ s2 +2mπ
θ s4 = θ p2 + θ s2 θ p1 +2mπ

Metrics