Abstract

We demonstrate a photonic approach to simultaneously realize a frequency-multiplied and phase-shifted microwave signal based on the birefringence effects in the high nonlinear fiber. The phase shift caused by asymmetric variations in refractive indexes of fiber between two orthogonal polarization states is introduced into two coherent harmonic of the modulated signals. By beating the phase-modulated sidebands, a frequency-multiplied microwave signal is generated and its phase can be adjusted by simply controlling the pump power. A microwave signal at doubled- or quadrupled-frequency with a full 2π phase shift is obtained over a frequency range from 10 GHz to 30 GHz. The proposed approach has the potential applications in the system with larger-broadband, higher-frequency and -data-rate system, even to handle a multi-wavelength operation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [CrossRef]
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  3. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  4. L. Gao, W. Liu, X. Chen, and J. Yao, “Photonic-assisted microwave frequency multiplication with a tunable multiplication factor,” Opt. Lett. 38(21), 4487–4490 (2013).
    [CrossRef] [PubMed]
  5. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
    [CrossRef]
  6. J. M. Fuster and J. Marti, “Photonic RF phase shifter for harmonic downconversion in phased array antenna beam-forming applications,” Electron. Lett. 33(17), 1426 (1997).
    [CrossRef]
  7. Z. S. Jia, J. J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
    [CrossRef]
  8. S. Pan and J. Yao, “Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter,” IEEE Trans. Microw. Theory Tech. 58(7), 1967–1975 (2010).
    [CrossRef]
  9. W. Li and J. Yao, “Microwave Generation Based on Optical Domain Microwave Frequency Octupling,” IEEE Photon. Technol. Lett. 22(1), 24–26 (2010).
    [CrossRef]
  10. Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
    [CrossRef]
  11. J. Zheng, H. Wang, W. Li, L. Wang, T. Su, J. Liu, and N. Zhu, “Photonic-assisted microwave frequency multiplier based on nonlinear polarization rotation,” Opt. Lett. 39(6), 1366–1369 (2014).
    [CrossRef] [PubMed]
  12. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
    [CrossRef] [PubMed]
  13. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
    [CrossRef]
  14. Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. H. Cheng, Y. J. Wen, Y. Wang, and C. Lu, “Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer,” Opt. Lett. 32(7), 745–747 (2007).
    [CrossRef] [PubMed]
  15. W. Li, W. H. Sun, W. T. Wang, and N. H. Zhu, “Optically controlled microwave phase shifter based on nonlinear polarization rotation in a highly nonlinear fiber,” Opt. Lett. 39(11), 3290–3293 (2014).
    [CrossRef] [PubMed]
  16. W. Zhang and J. Yao, “Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift,” IEEE Photon. J. 4(3), 889–894 (2012).
    [CrossRef]
  17. M. R. Fisher and S. L. Chuang, “Microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
    [CrossRef]
  18. J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360 degree microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
    [CrossRef] [PubMed]
  19. H. Chen, Y. Dong, H. He, W. Hu, and L. Li, “Photonic radio-frequency phase shifter based on polarization interference,” Opt. Lett. 34(15), 2375–2377 (2009).
    [CrossRef] [PubMed]
  20. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [CrossRef]
  21. H. Chen, M. Sun, Y. Ding, and X. Sun, “Microwave photonic phase shifter based on birefringence effects in a semiconductor optical amplifier,” Opt. Lett. 38(17), 3272–3274 (2013).
    [CrossRef] [PubMed]
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2007).

2014 (2)

2013 (2)

2012 (1)

W. Zhang and J. Yao, “Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift,” IEEE Photon. J. 4(3), 889–894 (2012).
[CrossRef]

2011 (2)

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360 degree microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[CrossRef] [PubMed]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

2010 (2)

S. Pan and J. Yao, “Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter,” IEEE Trans. Microw. Theory Tech. 58(7), 1967–1975 (2010).
[CrossRef]

W. Li and J. Yao, “Microwave Generation Based on Optical Domain Microwave Frequency Octupling,” IEEE Photon. Technol. Lett. 22(1), 24–26 (2010).
[CrossRef]

2009 (3)

2007 (1)

2006 (7)

Z. S. Jia, J. J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

M. R. Fisher and S. L. Chuang, “Microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[CrossRef]

1997 (1)

J. M. Fuster and J. Marti, “Photonic RF phase shifter for harmonic downconversion in phased array antenna beam-forming applications,” Electron. Lett. 33(17), 1426 (1997).
[CrossRef]

Capmany, J.

Chang, G. K.

Z. S. Jia, J. J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

Chen, H.

Chen, X.

Cheng, T. H.

Chi, H.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

Chuang, S. L.

M. R. Fisher and S. L. Chuang, “Microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

Ding, Y.

Dong, Y.

Essiambre, R. J.

Fisher, M. R.

M. R. Fisher and S. L. Chuang, “Microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

Fuster, J. M.

J. M. Fuster and J. Marti, “Photonic RF phase shifter for harmonic downconversion in phased array antenna beam-forming applications,” Electron. Lett. 33(17), 1426 (1997).
[CrossRef]

Gao, L.

Gasulla, I.

Han, B. C.

Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
[CrossRef]

He, H.

Hu, W.

Jia, Z. S.

Z. S. Jia, J. J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

Jiang, Y.

Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
[CrossRef]

Kuang, W.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Li, L.

Li, W.

J. Zheng, H. Wang, W. Li, L. Wang, T. Su, J. Liu, and N. Zhu, “Photonic-assisted microwave frequency multiplier based on nonlinear polarization rotation,” Opt. Lett. 39(6), 1366–1369 (2014).
[CrossRef] [PubMed]

W. Li, W. H. Sun, W. T. Wang, and N. H. Zhu, “Optically controlled microwave phase shifter based on nonlinear polarization rotation in a highly nonlinear fiber,” Opt. Lett. 39(11), 3290–3293 (2014).
[CrossRef] [PubMed]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

W. Li and J. Yao, “Microwave Generation Based on Optical Domain Microwave Frequency Octupling,” IEEE Photon. Technol. Lett. 22(1), 24–26 (2010).
[CrossRef]

Li, Z.

Liu, J.

Liu, W.

Lloret, J.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Lu, C.

Marti, J.

J. M. Fuster and J. Marti, “Photonic RF phase shifter for harmonic downconversion in phased array antenna beam-forming applications,” Electron. Lett. 33(17), 1426 (1997).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

Mørk, J.

Ortega, B.

Pan, S.

S. Pan and J. Yao, “Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter,” IEEE Trans. Microw. Theory Tech. 58(7), 1967–1975 (2010).
[CrossRef]

Pastor, D.

Sales, S.

Sancho, J.

Seeds, A. J.

Su, T.

Sun, M.

Sun, W. H.

Sun, X.

Wang, H.

Wang, L.

Wang, Q.

Wang, W. R.

Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
[CrossRef]

Wang, W. T.

Wang, Y.

Wen, Y. J.

Williams, K. J.

Winzer, P. J.

Xue, W.

Yang, E. Z.

Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
[CrossRef]

Yao, J.

L. Gao, W. Liu, X. Chen, and J. Yao, “Photonic-assisted microwave frequency multiplication with a tunable multiplication factor,” Opt. Lett. 38(21), 4487–4490 (2013).
[CrossRef] [PubMed]

W. Zhang and J. Yao, “Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift,” IEEE Photon. J. 4(3), 889–894 (2012).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

S. Pan and J. Yao, “Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter,” IEEE Trans. Microw. Theory Tech. 58(7), 1967–1975 (2010).
[CrossRef]

W. Li and J. Yao, “Microwave Generation Based on Optical Domain Microwave Frequency Octupling,” IEEE Photon. Technol. Lett. 22(1), 24–26 (2010).
[CrossRef]

Yu, J. J.

Z. S. Jia, J. J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

Yu, J. L.

Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
[CrossRef]

Zhang, L.

Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
[CrossRef]

Zhang, L. T.

Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
[CrossRef]

Zhang, W.

W. Zhang and J. Yao, “Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift,” IEEE Photon. J. 4(3), 889–894 (2012).
[CrossRef]

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

Zheng, J.

Zhu, N.

Zhu, N. H.

Electron. Lett. (1)

J. M. Fuster and J. Marti, “Photonic RF phase shifter for harmonic downconversion in phased array antenna beam-forming applications,” Electron. Lett. 33(17), 1426 (1997).
[CrossRef]

IEEE Photon. J. (1)

W. Zhang and J. Yao, “Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift,” IEEE Photon. J. 4(3), 889–894 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. R. Fisher and S. L. Chuang, “Microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006).
[CrossRef]

Z. S. Jia, J. J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic Generation of Phase-Coded Microwave Signal With Large Frequency Tunability,” IEEE Photon. Technol. Lett. 23(11), 712–714 (2011).
[CrossRef]

W. Li and J. Yao, “Microwave Generation Based on Optical Domain Microwave Frequency Octupling,” IEEE Photon. Technol. Lett. 22(1), 24–26 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

S. Pan and J. Yao, “Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter,” IEEE Trans. Microw. Theory Tech. 58(7), 1967–1975 (2010).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Eng. (1)

Y. Jiang, J. L. Yu, B. C. Han, L. Zhang, W. R. Wang, L. T. Zhang, and E. Z. Yang, “Millimeter-wave subcarrier generation utilizing four-wave mixing and dual-frequency Brillouin pump suppression,” Opt. Eng. 48(3), 030502 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

H. Chen, Y. Dong, H. He, W. Hu, and L. Li, “Photonic radio-frequency phase shifter based on polarization interference,” Opt. Lett. 34(15), 2375–2377 (2009).
[CrossRef] [PubMed]

Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. H. Cheng, Y. J. Wen, Y. Wang, and C. Lu, “Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer,” Opt. Lett. 32(7), 745–747 (2007).
[CrossRef] [PubMed]

W. Li, W. H. Sun, W. T. Wang, and N. H. Zhu, “Optically controlled microwave phase shifter based on nonlinear polarization rotation in a highly nonlinear fiber,” Opt. Lett. 39(11), 3290–3293 (2014).
[CrossRef] [PubMed]

J. Zheng, H. Wang, W. Li, L. Wang, T. Su, J. Liu, and N. Zhu, “Photonic-assisted microwave frequency multiplier based on nonlinear polarization rotation,” Opt. Lett. 39(6), 1366–1369 (2014).
[CrossRef] [PubMed]

W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009).
[CrossRef] [PubMed]

L. Gao, W. Liu, X. Chen, and J. Yao, “Photonic-assisted microwave frequency multiplication with a tunable multiplication factor,” Opt. Lett. 38(21), 4487–4490 (2013).
[CrossRef] [PubMed]

H. Chen, M. Sun, Y. Ding, and X. Sun, “Microwave photonic phase shifter based on birefringence effects in a semiconductor optical amplifier,” Opt. Lett. 38(17), 3272–3274 (2013).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of (a) photonic MPS; (b) the operation principle of OM Tx.

Fig. 2
Fig. 2

Experimental setup for the frequency-multiplied MPS based on birefringence effects in HNLF.

Fig. 3
Fig. 3

Measured optical spectra for the output signal of MZM and the orthogonal polarization signals at (a) MITP; (b) MATP.

Fig. 4
Fig. 4

The temporal waveforms of (a) the fundamental oscillation signal and doubled- and quadrupled-frequency microwave signals; (b) π/2 and π phase shifts of a 20 GHz microwave signal by controlling the launched pump power.

Fig. 5
Fig. 5

Measured phase shift versus the optical pump power.

Fig. 6
Fig. 6

(a) Measured phase response over a microwave frequencies ranging from 10 GHz to 30 GHz at different phase shift; (b) Power variation at different phase shifts with different frequencies

Fig. 7
Fig. 7

(a) Measured phase shift with different input wavelengths; (b) Power variation at different phase shifts with different wavelengths.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E DLI ( t )= x ^ ( A +m e j2π( f C +m f RF )t + A m e j2π( f C m f RF )t )
E PBC ( t )=( x ^ A +m e j2π( f C +m f RF )t )+( y ^ A -m e j2π( f C -m f RF )t )
n x = n x,l +Δ n x n y = n y,l +Δ n y
Δ n x =2 n 2 | E P ( t ) | 2 Δ n y =2b n 2 | E P ( t ) | 2 b= χ xxyy (3) / χ xxxx (3)
| E P ( t ) | 2 = P P ( t ) / A eff
Δ ϕ P,x = 2πΔ n x L eff λ P =2γ L eff P P ( t ) Δ ϕ P,y = 2πΔ n y L eff λ P =2γ L eff b P P ( t )
γ= 2π n 2 A eff λ P
E HNLF ( t )=( x ^ A +m e j2π( f C +m f RF )t+Δ ϕ P,x )+( y ^ A m e j2π( f C m f RF )t+Δ ϕ P,y )
E POL ( t )= 2 2 x ^ ( A +m e j2π( f C +m f RF )t+Δ ϕ P,x + A m e j2π( f C m f RF )t+Δ ϕ P,y )
i AC ( t )= A +m A m cos( 2mπ f RF +Δϕ ) Δϕ=Δ ϕ P,x -Δ ϕ P,y =2γ( 1-b ) L eff P P ( t )

Metrics