Abstract

The propagation dynamics of all-fiber plasmonic double parallel and orthogonal Airy beams are experimentally demonstrated. Two slits and groove arrays were fabricated by focused ion beam (FIB) milling on the gold coated end facet of an optical fiber to generate two Airy beams simultaneously. Sub-wavelength self-focusing of double parallel Airy beams in free space is experimentally verified. Effects of geometrical parameters on the intensity profiles of the focal spot are analyzed in detail. The characteristics at the junction of the two main lobes can be adjusted by controlling the initial phase difference of the two Airy beams. The propagation of two orthogonal Airy beams is also experimentally investigated. Multi-Airy beams are of importance to realize all-fiber optical trapping, fiber integrated devices, and laser shaping.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [CrossRef]
  2. W. M. Lee, X.-C. Yuan, and W. C. Cheong, “Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation,” Opt. Lett. 29(15), 1796–1798 (2004).
    [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  4. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
    [CrossRef]
  5. I. Epstein and A. Arie, “Arbitrary Bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
    [CrossRef] [PubMed]
  6. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [CrossRef]
  7. I. M. Besieris and A. M. Shaarawi, “A note on an accelerating finite energy Airy beam,” Opt. Lett. 32(16), 2447–2449 (2007).
    [CrossRef] [PubMed]
  8. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [CrossRef] [PubMed]
  9. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
    [CrossRef] [PubMed]
  10. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
    [CrossRef] [PubMed]
  11. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense airy beams,” Science 324(5924), 229–232 (2009).
    [CrossRef] [PubMed]
  12. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
    [CrossRef] [PubMed]
  13. Y. Fan, J. Wei, J. Ma, Y. Wang, and Y. Wu, “Tunable twin Airy beams induced by binary phase patterns,” Opt. Lett. 38(8), 1286–1288 (2013).
    [CrossRef] [PubMed]
  14. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  15. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
    [CrossRef] [PubMed]
  16. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
    [CrossRef] [PubMed]
  17. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
    [CrossRef] [PubMed]
  18. C. Y. Guan, M. Ding, J. H. Shi, P. F. Wang, P. Hua, L. B. Yuan, and G. Brambilla, “Compact all-fiber plasmonic Airy-like beam generator,” Opt. Lett. 39(5), 1113–1116 (2014).
    [CrossRef] [PubMed]
  19. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
    [CrossRef] [PubMed]

2014

2013

2012

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[CrossRef] [PubMed]

2011

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[CrossRef] [PubMed]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
[CrossRef] [PubMed]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

2009

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

2008

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[CrossRef] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

2007

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef] [PubMed]

I. M. Besieris and A. M. Shaarawi, “A note on an accelerating finite energy Airy beam,” Opt. Lett. 32(16), 2447–2449 (2007).
[CrossRef] [PubMed]

2005

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

2004

2003

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Arie, A.

I. Epstein and A. Arie, “Arbitrary Bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[CrossRef] [PubMed]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[CrossRef] [PubMed]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Besieris, I. M.

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Brambilla, G.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef] [PubMed]

Chen, Z.

Cheong, W. C.

Christodoulides, D. N.

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

Courvoisier, F.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Ding, M.

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef] [PubMed]

Dolev, I.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[CrossRef] [PubMed]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Dudley, J. M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

Efremidis, N. K.

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Epstein, I.

I. Epstein and A. Arie, “Arbitrary Bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[CrossRef] [PubMed]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[CrossRef] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Fan, Y.

Froehly, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

Furfaro, L.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Guan, C. Y.

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Hua, P.

Jacquot, M.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

Janunts, N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Klein, A. E.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Lacourt, P. A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

Lee, W. M.

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Li, L.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Li, T.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Ma, J.

Mathis, A.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Mills, M. S.

Minovich, A.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Neshev, D. N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Papazoglou, D. G.

Pertsch, T.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Prakash, J.

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Shaarawi, A. M.

Shi, J. H.

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef] [PubMed]

Tzortzakis, S.

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

Wang, P. F.

Wang, S. M.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Wang, Y.

Wei, J.

Wu, Y.

Yuan, L. B.

Yuan, X.-C.

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Zhang, P.

Zhang, Z.

Zhu, S. N.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. A. Lacourt, and J. M. Dudley, “Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams,” Appl. Phys. Lett. 101(7), 071110 (2012).
[CrossRef]

Nat. Photonics

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[CrossRef]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef] [PubMed]

I. Epstein and A. Arie, “Arbitrary Bending plasmonic light waves,” Phys. Rev. Lett. 112(2), 023903 (2014).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[CrossRef] [PubMed]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy Beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[CrossRef] [PubMed]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[CrossRef] [PubMed]

Science

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) - (c) SEM images of the nanostructured gold coated optical fiber facet with double parallel slits (d = 2.89 μm) and graded grooves arrays. The inset of Fig. 1(b) is the optimized local lattice constant of the graded grooves. (d) Schematic illustration of the proposed device.

Fig. 2
Fig. 2

(a) Cross sections of the beam at different propagation distances for d = 2.89μm. (b) Measured interference field maps in the free space. (c) Calculated interference field maps of two Airy beam by using analytic formula. (d) Calculated interference field maps for the proposed structure by using FEM. (e) Calculated far-field along the x-axis. (f) Intensity profiles of the focal spot.

Fig. 3
Fig. 3

(a) Intensity profile of the focal spot for the case with imperfect depth of the grooves. (b) Field maps of the structure with h = 45nm.

Fig. 4
Fig. 4

Measured field maps for (a) d = 2.1μm and (b) d = 2.5μm.

Fig. 5
Fig. 5

(a) Field maps of symmetrical double Airy beams for different initial phase differences. (b) Intensity profiles at the junction of the two main lobes. (c) Dependence of the intersection distance of main lobes on the phase difference.

Fig. 6
Fig. 6

(a)-(c) SEM images of the nanostructured gold coated optical fiber facet with two orthogonal slits and groove arrays. (d) Cross sections of the captured beam images at different propagation distances.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(s,ξ)=Ai[s (ξ/2) 2 +iaξ]exp[ a 3 /3+as(a ξ 2 /2)]exp[i( ξ 3 /12)+i( a 2 ξ/2)+i(sξ/2)]

Metrics