Abstract

The optimized nonuniform growth process was used to achieve spatially dependent reflectivity and dispersions characteristics in a highly dispersive semiconductor mirror. The mirror, together with a semiconductor saturable absorber mirror (SESAM), was used to demonstrate a tunable femtosecond Yb:KYW oscillator. In the passive modelocking regime the laser could be continuously tuned over 3.5 nm spectral band around 1032 nm with high resolution, maintaining the average output power above 140 mW.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  2. J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (1998).
    [CrossRef]
  3. C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
    [CrossRef] [PubMed]
  4. E. A. De Souza, M. C. Nuss, W. H. Knox, and D. A. B. Miller, “Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett. 20(10), 1166–1168 (1995).
    [CrossRef] [PubMed]
  5. K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
    [CrossRef]
  6. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
    [CrossRef]
  7. N. H. Rizvi, P. M. W. French, and J. R. Taylor, “50-fs pulse generation from a self-starting cw passively mode-locked Cr:LiSrAlF6 laser,” Opt. Lett. 17(12), 877–879 (1992).
    [CrossRef] [PubMed]
  8. P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17(7), 5630–5635 (2009).
    [CrossRef] [PubMed]
  9. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [CrossRef] [PubMed]
  10. V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009).
    [CrossRef] [PubMed]
  11. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
    [CrossRef] [PubMed]
  12. A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).
  13. S. Zhu, “Birefringent filter with tilted optic axis for tuning dye lasers: theory and design,” Appl. Opt. 29(3), 410–415 (1990).
    [CrossRef] [PubMed]
  14. Y. Saito, K. Shimodaira, A. Nomura, and T. Kano, “Dye-mixture laser tunable in three primary color regions with a linear variable filter,” Appl. Opt. 34(3), 432–434 (1995).
    [CrossRef] [PubMed]
  15. P. Lavigne, N. McCarthy, and J.-G. Demers, “Design and characterization of complementary Gaussian reflectivity mirrors,” Appl. Opt. 24(16), 2581–2586 (1985).
    [CrossRef] [PubMed]
  16. C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
    [CrossRef]
  17. N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35(2), 129–137 (1999).
    [CrossRef]
  18. A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
    [CrossRef]
  19. A. P. Kovács, K. Osvay, Z. Bor, and R. Szipöcs, “Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry,” Opt. Lett. 20(7), 788–790 (1995).
    [CrossRef] [PubMed]
  20. A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
    [CrossRef]
  21. A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
    [CrossRef]

2014 (2)

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

2013 (1)

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

2009 (2)

2008 (2)

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[CrossRef] [PubMed]

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
[CrossRef]

1999 (1)

N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35(2), 129–137 (1999).
[CrossRef]

1998 (1)

J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (1998).
[CrossRef]

1995 (3)

1994 (3)

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[CrossRef]

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

1990 (1)

1985 (1)

Acioli, L. H.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Ahmad, I.

Apolonski, A.

Bor, Z.

Brabec, T.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[CrossRef]

Bugajski, M.

A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

Curley, P. F.

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[CrossRef]

De Grauw, C. J.

J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (1998).
[CrossRef]

De Souza, E. A.

Demers, J.-G.

Dems, M.

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

Ferencz, K.

Florez, L.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

French, P. M. W.

Fujimoto, J. G.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Fulop, J.

Gerritsen, H. C.

J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (1998).
[CrossRef]

Goszczynski, K.

A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
[CrossRef]

Harbison, J.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

Hejduk, K.

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

Ippen, E. P.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Jasik, A.

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

Kano, T.

Kärtner, F. X.

N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35(2), 129–137 (1999).
[CrossRef]

Keller, U.

N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35(2), 129–137 (1999).
[CrossRef]

Kim, R. H.

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Knox, W. H.

Kovács, A. P.

Kowalczyk, E.

A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
[CrossRef]

Krausz, F.

Lavigne, P.

Lee, K.

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Lee, T. P.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

Maeda, M.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

Matuschek, N.

N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35(2), 129–137 (1999).
[CrossRef]

McCarthy, N.

Miller, D. A. B.

Muszalski, J.

A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
[CrossRef]

Naumov, S.

Nomura, A.

Nuss, M. C.

Ochalski, T. J.

A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
[CrossRef]

Osvay, K.

Park, S. H.

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Pervak, V.

Radzewicz, C.

Reginski, K.

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

Rizvi, N. H.

Saito, Y.

Shimodaira, K.

Spielmann, C.

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[CrossRef] [PubMed]

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[CrossRef]

Stoffel, N.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

Sugita, A.

Sun, C. K.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Sytsma, J.

J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (1998).
[CrossRef]

Szipöcs, R.

Taylor, J. R.

Teisset, C.

Tikhonravov, A. V.

Trubetskov, M. K.

Vallée, F.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Vroom, J. M.

J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (1998).
[CrossRef]

Wasylczyk, P.

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17(7), 5630–5635 (2009).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wnuk, P.

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

P. Wasylczyk, P. Wnuk, and C. Radzewicz, “Passively modelocked, diode-pumped Yb:KYW femtosecond oscillator with 1 GHz repetition rate,” Opt. Express 17(7), 5630–5635 (2009).
[CrossRef] [PubMed]

Wójcik, A.

A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
[CrossRef]

Wojcik-Jedlinska, A.

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

Wójcik-Jedlinska, A.

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

Yang, D.

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Zah, C.

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

Zhu, S.

Zinkiewicz, L.

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Jasik, M. Dems, P. Wnuk, P. Wasylczyk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “Design and fabrication of highly dispersive semiconductor double-chirped mirrors,” Appl. Phys. B 116, 141–146 (2014).

IEEE J. Quantum Electron. (3)

C. Chang-Hasnain, J. Harbison, C. Zah, M. Maeda, L. Florez, N. Stoffel, and T. P. Lee, “Multiple wavelength tunable surface emitting laser arrays,” IEEE J. Quantum Electron. 27(6), 1368–1376 (1991).
[CrossRef]

N. Matuschek, F. X. Kärtner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35(2), 129–137 (1999).
[CrossRef]

C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroad-band femtosecond lasers,” IEEE J. Quantum Electron. 30(4), 1100–1114 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Jasik, P. Wasylczyk, P. Wnuk, M. Dems, A. Wojcik-Jedlinska, K. Reginski, L. Zinkiewicz, and K. Hejduk, “Tunable semiconductor double-chirped mirror with high negative dispersion,” IEEE Photon. Technol. Lett. 26(1), 14–17 (2014).
[CrossRef]

J. Microsc. (1)

J. Sytsma, J. M. Vroom, C. J. De Grauw, and H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation,” J. Microsc. 191(1), 39–51 (1998).
[CrossRef]

Laser Phys. Lett. (1)

A. Jasik, P. Wasylczyk, M. Dems, P. Wnuk, A. Wójcik-Jedlińska, K. Regiński, Ł. Zinkiewicz, and K. Hejduk, “A passively mode-locked, self-starting femtosecond Yb:KYW laser with a single highly dispersive semiconductor double-chirped mirror for dispersion compensation,” Laser Phys. Lett. 10(8), 085302 (2013).
[CrossRef]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. B Condens. Matter (1)

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter 50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Prog. Polym. Sci. (1)

K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[CrossRef]

Thin Solid Films (1)

A. Wójcik, T. J. Ochalski, J. Muszalski, E. Kowalczyk, K. Goszczyński, and M. Bugajski, “Photoluminescence mapping and angle-resolved photoluminescence of MBE-grown InGaAs/GaAs RC LED and VCSEL structures,” Thin Solid Films 412(1–2), 114–121 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The wavelength tunable semiconductor chirped mirror nonuniform growth process concept. The effusion cells with angularly dependent deposition density are used in the configuration resulting in a spatially dependent layer thickness.

Fig. 2
Fig. 2

Position dependent reflectivity curves of the TSDCM. The inset shows the measurement locations across the substrate, 0 mm corresponding to the 2” GaAs wafer center. The subsequent curves are vertically offset for clarity.

Fig. 3
Fig. 3

Dispersive characteristics of the tunable semiconductor double chirped mirror; (a) spectral dependence of the GDD measured for four different distances from the mirror center, (b) spectral position of the second GDD minimum plotted vs. position across the mirror radius, together with the quadratic polynomial fit.

Fig. 4
Fig. 4

(a) Schematic of the Yb:KYW tunable femtosecond oscillator based on a 1 mm crystal (X) and the tunable semiconductor double-chirped mirror (TSDCM) on a translation stage, assisted by a SESAM mirror. The laser is pumped by a single mode 980 nm fiber-coupled laser diode (LD), focused on a crystal by a pair of lenses (L) (collimating f = 15 mm aspheric and focusing f = 63 mm). The cavity ends by an 8% transmission output coupler (OC). M1, M2 are concave R = 50 mm pump mirrors. (b) The oscillator spectra for different positions of the cavity mode on the TSDCM mirror surface – the tuning range spans more than 3.5 nm around 1032 nm (b).

Fig. 5
Fig. 5

Femtosecond tunable Yb:KYW laser performance for different position of the beam on the TSDCM. The output power (black dots, left axis) and the central wavelength of the generated pulses (red squares, right axis) (a). FWHM of the laser spectra (black triangles, left axis) and the FWHM of the pulse duration (red squares, right axis) (b).

Metrics