Abstract

A novel technique for mitigating the optical beat interference (OBI) noise in an optical orthogonal frequency division multiple access passive optical network (OFDMA-PON) uplink transmission is presented. By using an out of signal band RF clipping tone to the optical seed carrier, the OBI noise has been reduced and the resulting throughput and spectral efficiency has been improved. As an experimental verification, we demonstrate that the spectral efficiency of 23 km and 50 km have been doubled in the OFDMA-PON uplink transmission.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Kazovsky, W. T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
    [CrossRef]
  2. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [CrossRef]
  3. C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
    [CrossRef]
  4. N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
    [CrossRef]
  5. L. A. Neto, G. B. de Farias, N. Genay, S. Menezo, B. Charbonnier, and P. Chanclou, “ On the Limitations of IM/DD WDM-FDMA-OFDM PON with Single Photodiode for Upstream Transmission” in Proc. Opt. Fiber Commun. Conf. (OFC) (Los Angeles, USA, 2012), paper OM4B.1.
    [CrossRef]
  6. X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang, “First real-time experimental demonstrations of 11.25Gb/s optical OFDMA PONs with adaptive dynamic bandwidth allocation,” Opt. Express 19(21), 20557–20570 (2011).
    [CrossRef] [PubMed]
  7. A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, “Spectral shift and broadening of DFB lasers under direct modulation,” IEEE Photon. Technol. Lett. 10(12), 1709–1711 (1998).
    [CrossRef]
  8. M. M. Banat and M. Kavehrad, “Reduction of optical beat interference in SCM/WDMA networks using pseudorandom phase modulation,” J. Lightwave Technol. 12(10), 1863–1868 (1994).
    [CrossRef]
  9. S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical beat interference in subcarrier networks,” IEEE Photon. Technol. Lett. 8(5), 694–696 (1996).
    [CrossRef]

2012 (1)

2011 (1)

2010 (1)

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

2007 (1)

1998 (1)

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, “Spectral shift and broadening of DFB lasers under direct modulation,” IEEE Photon. Technol. Lett. 10(12), 1709–1711 (1998).
[CrossRef]

1996 (1)

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical beat interference in subcarrier networks,” IEEE Photon. Technol. Lett. 8(5), 694–696 (1996).
[CrossRef]

1994 (1)

M. M. Banat and M. Kavehrad, “Reduction of optical beat interference in SCM/WDMA networks using pseudorandom phase modulation,” J. Lightwave Technol. 12(10), 1863–1868 (1994).
[CrossRef]

1990 (1)

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

Andonovic, I.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, “Spectral shift and broadening of DFB lasers under direct modulation,” IEEE Photon. Technol. Lett. 10(12), 1709–1711 (1998).
[CrossRef]

Banat, M. M.

M. M. Banat and M. Kavehrad, “Reduction of optical beat interference in SCM/WDMA networks using pseudorandom phase modulation,” J. Lightwave Technol. 12(10), 1863–1868 (1994).
[CrossRef]

Bodeep, G. E.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical beat interference in subcarrier networks,” IEEE Photon. Technol. Lett. 8(5), 694–696 (1996).
[CrossRef]

Cheng, N.

Cornwell, W. D.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, “Spectral shift and broadening of DFB lasers under direct modulation,” IEEE Photon. Technol. Lett. 10(12), 1709–1711 (1998).
[CrossRef]

Cvijetic, N.

N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

Darcie, T. E.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical beat interference in subcarrier networks,” IEEE Photon. Technol. Lett. 8(5), 694–696 (1996).
[CrossRef]

Desem, C.

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

Giddings, R. P.

Groenewald, J.

Gutierrez, D.

Hu, J.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

Hugues-Salas, E.

Jin, X. Q.

Kavehrad, M.

M. M. Banat and M. Kavehrad, “Reduction of optical beat interference in SCM/WDMA networks using pseudorandom phase modulation,” J. Lightwave Technol. 12(10), 1863–1868 (1994).
[CrossRef]

Kazovsky, L. G.

Lu, X.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical beat interference in subcarrier networks,” IEEE Photon. Technol. Lett. 8(5), 694–696 (1996).
[CrossRef]

Qian, D.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

Shalom, H.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, “Spectral shift and broadening of DFB lasers under direct modulation,” IEEE Photon. Technol. Lett. 10(12), 1709–1711 (1998).
[CrossRef]

Shaw, W. T.

Tang, J. M.

Tur, M.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, “Spectral shift and broadening of DFB lasers under direct modulation,” IEEE Photon. Technol. Lett. 10(12), 1709–1711 (1998).
[CrossRef]

Wang, T.

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

Wei, J. L.

Wong, S.-W.

Woodward, S. L.

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical beat interference in subcarrier networks,” IEEE Photon. Technol. Lett. 8(5), 694–696 (1996).
[CrossRef]

Zadok, A.

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, “Spectral shift and broadening of DFB lasers under direct modulation,” IEEE Photon. Technol. Lett. 10(12), 1709–1711 (1998).
[CrossRef]

IEEE J. Sel. Areas Comm. (2)

C. Desem, “Optical interference in subcarrier multiplexed systems with multiple optical carriers,” IEEE J. Sel. Areas Comm. 8(7), 1290–1295 (1990).
[CrossRef]

N. Cvijetic, D. Qian, J. Hu, and T. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10Gb/s,” IEEE J. Sel. Areas Comm. 28(6), 781–790 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, “Spectral shift and broadening of DFB lasers under direct modulation,” IEEE Photon. Technol. Lett. 10(12), 1709–1711 (1998).
[CrossRef]

S. L. Woodward, X. Lu, T. E. Darcie, and G. E. Bodeep, “Reduction of optical beat interference in subcarrier networks,” IEEE Photon. Technol. Lett. 8(5), 694–696 (1996).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (1)

L. A. Neto, G. B. de Farias, N. Genay, S. Menezo, B. Charbonnier, and P. Chanclou, “ On the Limitations of IM/DD WDM-FDMA-OFDM PON with Single Photodiode for Upstream Transmission” in Proc. Opt. Fiber Commun. Conf. (OFC) (Los Angeles, USA, 2012), paper OM4B.1.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Proposed OBI noise reduction scheme.

Fig. 2
Fig. 2

Intermodulation effect with (a) low frequency RF clipping tone and (b) out-of-band RF clipping tone.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Optical spectra of optical seed carrier (a) without clipping tone and (b) with clipping tone.

Fig. 5
Fig. 5

RF spectrum of uplink transmission.

Fig. 6
Fig. 6

RF spectra of received signals. In case of without uplink signals (a) without RF clipping tone and (b) with RF clipping tone. In case of with uplink signals (c) without RF clipping tone and (d) with RF clipping tone. Spectra of RF clipping tone region (e) without uplink signals and (f) with uplink signals.

Fig. 7
Fig. 7

Total data throughput and spectral efficiency for input optical power of preamplifier in the case of a b2b, 23 km, 50 km transmission.

Fig. 8
Fig. 8

Bit/Power-loading Profile and SNR for each subcarrier in case of best transmission performance (a) without RF clipping tone and (b) with RF clipping tone.

Metrics