Abstract

We present a novel technique for Brillouin optical time domain analysis (BOTDA) sensors that simultaneously compensates non-local effects and reduces Brillouin noise. The technique relies on the wavelength modulation of the optical source to modify the Brillouin interaction between probe and pump waves during their propagation. The resulting Brillouin distribution mimics the wavelength modulation, creating a virtual Brillouin frequency shift profile along the sensing fiber. The fundamentals of the technique are first described theoretically and using numerical simulations. Then, proof-of-concept experiments demonstrate the capabilities of the system to reduce large variations of the pump power resulting from the interaction with high probe powers and to decrease the Brillouin induced noise enhancing the signal to noise ratio (SNR) of the system. Furthermore, we show, for the first time to our knowledge, measurements of the Brillouin distribution using an injected optical power higher than the Brillouin threshold of the fiber.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [CrossRef] [PubMed]
  2. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
    [CrossRef] [PubMed]
  3. J. Urricelqui, M. Sagues, and A. Loayssa, “BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation,” Opt. Express 21(14), 17186–17194 (2013).
    [CrossRef] [PubMed]
  4. A. David and M. Horowitz, “Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers,” Opt. Express 19(12), 11792–11803 (2011).
    [CrossRef] [PubMed]
  5. T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
    [CrossRef]
  6. H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
    [CrossRef]
  7. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
    [CrossRef]
  8. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
    [CrossRef]
  9. A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA,” J. Lightwave Technol. 30(8), 1066–1072 (2012).
    [CrossRef]
  10. K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
    [CrossRef]
  11. L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152(1–3), 65–70 (1998).
    [CrossRef]
  12. P. Bayvel and P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26(7), 434–436 (1990).
    [CrossRef]

2013 (2)

2012 (2)

2011 (2)

2008 (1)

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[CrossRef]

1998 (2)

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152(1–3), 65–70 (1998).
[CrossRef]

1996 (1)

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

1990 (1)

P. Bayvel and P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26(7), 434–436 (1990).
[CrossRef]

Andonovic, I.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Bao, X.

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[CrossRef]

L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152(1–3), 65–70 (1998).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Bayvel, P.

P. Bayvel and P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26(7), 434–436 (1990).
[CrossRef]

Bernini, R.

Chen, L.

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[CrossRef]

L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152(1–3), 65–70 (1998).
[CrossRef]

Cornwell, W. D.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

David, A.

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Dong, Y.

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Horowitz, M.

Ieda, K.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[CrossRef]

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Legg, P. J.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Lin, J.

Loayssa, A.

Mafang, S. F.

Minardo, A.

Nakajima, K.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[CrossRef]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Radmore, P. M.

P. Bayvel and P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26(7), 434–436 (1990).
[CrossRef]

Sagues, M.

Sankawa, I.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[CrossRef]

Shalom, H.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Shimizu, T.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[CrossRef]

Shiraki, K.

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Thévenaz, L.

Tur, M.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Urricelqui, J.

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

Zadok, A.

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

Zeni, L.

Zornoza, A.

Electron. Lett. (1)

P. Bayvel and P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26(7), 434–436 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Shalom, A. Zadok, M. Tur, P. J. Legg, W. D. Cornwell, and I. Andonovic, “On the various time constants of wavelength changes of a DFB laser under direct modulation,” IEEE J. Quantum Electron. 34(10), 1816–1822 (1998).
[CrossRef]

J. Lightwave Technol. (4)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR improvement and distributed phase-shift measurements in BOTDA,” J. Lightwave Technol. 30(8), 1066–1072 (2012).
[CrossRef]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
[CrossRef]

Opt. Commun. (1)

L. Chen and X. Bao, “Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152(1–3), 65–70 (1998).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

T. Shimizu, K. Nakajima, K. Shiraki, K. Ieda, and I. Sankawa, “Evaluation methods and requirements for the stimulated Brillouin scattering threshold in a single-mode fiber,” Opt. Fiber Technol. 14(1), 10–15 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fundamentals of the laser wavelength dithering technique for virtual BFS synthesis.

Fig. 2
Fig. 2

(a) Calculated depletion factor of pump power using (b) different BFS distributions: a uniform BFS fiber (black-dot-dashed line), a virtual BFS based on two fiber segments (red-long-dashed line) and two sinusoidal virtual BFSs with a frequency modulation of 80 MHz (green-short-dashed line) and 150 MHz (blue-solid line) with 12 cycles along the fiber. Simulation’s parameters are: g0 = 1.1 10−11m/W, ΔνB = 30 MHz, L = 20 km, effective area is 8 10−11 m2 and the injected optical pump and probe powers are 100 mW and 150 µW, respectively.

Fig. 3
Fig. 3

Calculated reflected (dashed-line) and transmitted (solid-line) power using a uniform BFS fiber (red line) and a sinusoidal virtual BFS of 150 MHz frequency modulation and 12 cycles (blue line). Simulation parameters are: g0 = 1.1 10−11m/W, ΔνB = 30 MHz, L = 20 km, effective area is 8 10−11 m2 and the optical power injected to simulate SpBS waves is 7 nW.

Fig. 4
Fig. 4

Experimental setup for the BOTDA sensor based on virtual BFS synthesis technique.

Fig. 5
Fig. 5

(a) Experimental distribution of Brillouin spectra along the fiber for a conventional BOTDA measurement and (b) for a sinusoidal synthesized BFS distribution after applying modulation to the optical source (νS0 is the optical carrier frequency, when no modulation is applied to the laser source).

Fig. 6
Fig. 6

(a) Measured gain factor of the pump power as a function of the frequency separation between pump and probe waves after (blue circles) and before (red squares) the source wavelength modulation is turned on. (b) Measured Brillouin spectra using the conventional technique (red-dashed line) and using the sinusoidal synthesized BFS distribution (blue-solid line).

Fig. 7
Fig. 7

Measured Brillouin spectra turning on (blue-solid line) and off (red-dashed line) the wavelength modulation applied to the laser source.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δν(z)= ν P ν S (z)BFS(z)
d=| P P P P0 |/ P P0
P P ( z )= P P ( 0 )exp( P S ( L )exp( αL ) A eff 0 z g 0 1+ [ 2Δν( z ) / Δ ν B ] 2 exp( αz )dzαz )

Metrics