Abstract

While the gain-transient suppression of erbium-doped fiber amplifiers (EDFAs) has been widely studied, the large interval between upstream burst-mode signals from optical network units (ONUs) in time- and wavelength-division multiplexing passive optical networks (TWDM-PONs) presents new challenges. A non-gain-clamped EDFA acting as a preamplifier does not have the desired overshoot on the burst-mode signal when there are only a few ONUs in operation in the TWDM-PON. To solve this problem, we propose an all-optical gain-clamped EDFA (OGC-EDFA) that uses a distributed feedback laser diode to generate a saturation signal. An OGC-EDFA based on a ring laser configuration was also tested to compare the overshoot performance; the both OGC-EDFAs showed negligible overshoot performance. Given the negligible overshoot and wide input dynamic range of the OGC-EDFA, the proposed amplifier is thought to be a simple, low-cost solution for TWDM-PON applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40 Gb/s time and wavelength division multiplexed passive optical network prototype system,” OFC/NFOEC 2012, paper PDP5D.7 (2012).
  2. E. Wong, M. Mueller, and M. C. Amann, “Characterization of energy-efficient and colorless ONUs for future TWDM-PONs,” Opt. Express 21(18), 20747–20761 (2013).
    [CrossRef] [PubMed]
  3. FSAN next generation PON task group, http://www.fsan.org/task-groups/ngpon/ .
  4. 40-Gigabit-capable passive optical networks (NG-PON2): Physical media dependent (PMD) layer specification, ITU-T G.989.2 (2013).
  5. K. Kim, J. Lee, S. Lee, J. Lee, and Y. Jang, “Low-cost, low-power, high-capacity 3R OEO-Type reach extender for a long-reach TDMA-PON,” ETRI. J. 34(3), 352–360 (2012).
    [CrossRef]
  6. X. Qiu, “Burst mode receiver technology for short synchronization,”, OFC/NFOEC 2013, Tutorial OW3G.4 (2013).
  7. J. Kim, J. J. Lee, S. Lee, and Y. Kim, “Physical media dependent prototype for 10-Gigabit-capable PON OLT,” ETRIJ 35(2), 245–252 (2013).
    [CrossRef]
  8. 40-Gigabit-capable passive optical networks (NG-PON2): Transmission convergence (TC) layer specification, ITU-T G.989.3, under study in ITU-T SG15.
  9. R. Kubo, J.-i. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, and H. Hadama, “Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON,” J. Opt. Commun. Netw. 2(9), 716–729 (2010).
    [CrossRef]
  10. H. H. Lee, K. Kim, J. Lee, and S. Lee, “Efficient power-saving 10-Gb/s ONU using uplink usage-dependent sleep mode control algorithm in WDM-PON,” ETRI J. 35(2), 253–258 (2013).
    [CrossRef]
  11. Y. Awaji, H. Furukawa, B. J. Puttnam, and N. Wada, “Burst-mode optical amplifier,” OFC/NFOEC 2010, paper OTh14 (2010).
  12. N. Suzuki and J. Nakagawa, “First demonstration of full burst optical amplified GE-PON uplink with extended system budget of up to 128 ONU splits and 58 km reach,” ECOC 2005, paper Tu1.3.3 (2005).
  13. P. Ossieur, C. Antony, A. M. Clarke, A. Naughton, H.-G. Krimmel, Y. Chang, C. Ford, A. Borghesani, D. G. Moodie, A. Poustie, R. Wyatt, B. Harmon, I. Lealman, G. Maxwell, D. Rogers, D. W. Smith, D. Nesset, R. P. Davey, and P. D. Townsend, “A 135 km, 8192-split, carrier distributed DWDM-TDMA PON with 2 x 32 x 10 Gb/s capacity,” J. Lightwave Technol. 29(4), 463–474 (2011).
    [CrossRef]
  14. H. Nakaji and M. Shigematsu, “Wavelength dependence of dynamic gain fluctuation in a high-speed automatic gain controlled erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 15(2), 203–205 (2003).
    [CrossRef]
  15. H. H. Lee, D. Lee, H. S. Chung, and H. J. Lee, “Effective suppression of signal-wavelength dependent transients in a pump-controlled L-band EDFA,” IEEE Photon. Technol. Lett. 16(6), 1462–1464 (2004).
    [CrossRef]
  16. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifier, (Academic Press, 1999).
  17. J. T. Ahn and K. H. Kim, “All-optical gain-clamped Erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16(1), 84–86 (2004).
    [CrossRef]
  18. G. Luo, J. L. Zyskind, J. A. Nagel, and M. A. Ali, “Experimental and theoretical analysis of relaxation-oscillations and spectral hole burning effects in all-optical gain-clamped EDFA’s for WDM networks,” J. Lightwave Technol. 16(4), 527–533 (1998).
    [CrossRef]
  19. J. Sugawa, H. Ikeda, S. Matsuda, and M. Suzuki, “Optical amplifier technologies for high power budget PON Systems,” COIN2012, paper WF.3 (2012).
  20. Licomm Corp, “XOA,” http://licomm.com/2011/product/product_detail.asp?Depth1=1&Depth2=4&Seq=96 .

2013

E. Wong, M. Mueller, and M. C. Amann, “Characterization of energy-efficient and colorless ONUs for future TWDM-PONs,” Opt. Express 21(18), 20747–20761 (2013).
[CrossRef] [PubMed]

J. Kim, J. J. Lee, S. Lee, and Y. Kim, “Physical media dependent prototype for 10-Gigabit-capable PON OLT,” ETRIJ 35(2), 245–252 (2013).
[CrossRef]

H. H. Lee, K. Kim, J. Lee, and S. Lee, “Efficient power-saving 10-Gb/s ONU using uplink usage-dependent sleep mode control algorithm in WDM-PON,” ETRI J. 35(2), 253–258 (2013).
[CrossRef]

2012

K. Kim, J. Lee, S. Lee, J. Lee, and Y. Jang, “Low-cost, low-power, high-capacity 3R OEO-Type reach extender for a long-reach TDMA-PON,” ETRI. J. 34(3), 352–360 (2012).
[CrossRef]

2011

2010

2004

H. H. Lee, D. Lee, H. S. Chung, and H. J. Lee, “Effective suppression of signal-wavelength dependent transients in a pump-controlled L-band EDFA,” IEEE Photon. Technol. Lett. 16(6), 1462–1464 (2004).
[CrossRef]

J. T. Ahn and K. H. Kim, “All-optical gain-clamped Erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16(1), 84–86 (2004).
[CrossRef]

2003

H. Nakaji and M. Shigematsu, “Wavelength dependence of dynamic gain fluctuation in a high-speed automatic gain controlled erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 15(2), 203–205 (2003).
[CrossRef]

1998

Ahn, J. T.

J. T. Ahn and K. H. Kim, “All-optical gain-clamped Erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16(1), 84–86 (2004).
[CrossRef]

Ali, M. A.

Amann, M. C.

Antony, C.

Borghesani, A.

Chang, Y.

Chung, H. S.

H. H. Lee, D. Lee, H. S. Chung, and H. J. Lee, “Effective suppression of signal-wavelength dependent transients in a pump-controlled L-band EDFA,” IEEE Photon. Technol. Lett. 16(6), 1462–1464 (2004).
[CrossRef]

Clarke, A. M.

Davey, R. P.

Ford, C.

Fujimoto, Y.

Hadama, H.

Harmon, B.

Jang, Y.

K. Kim, J. Lee, S. Lee, J. Lee, and Y. Jang, “Low-cost, low-power, high-capacity 3R OEO-Type reach extender for a long-reach TDMA-PON,” ETRI. J. 34(3), 352–360 (2012).
[CrossRef]

Kani, J.-i.

Kim, J.

J. Kim, J. J. Lee, S. Lee, and Y. Kim, “Physical media dependent prototype for 10-Gigabit-capable PON OLT,” ETRIJ 35(2), 245–252 (2013).
[CrossRef]

Kim, K.

H. H. Lee, K. Kim, J. Lee, and S. Lee, “Efficient power-saving 10-Gb/s ONU using uplink usage-dependent sleep mode control algorithm in WDM-PON,” ETRI J. 35(2), 253–258 (2013).
[CrossRef]

K. Kim, J. Lee, S. Lee, J. Lee, and Y. Jang, “Low-cost, low-power, high-capacity 3R OEO-Type reach extender for a long-reach TDMA-PON,” ETRI. J. 34(3), 352–360 (2012).
[CrossRef]

Kim, K. H.

J. T. Ahn and K. H. Kim, “All-optical gain-clamped Erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16(1), 84–86 (2004).
[CrossRef]

Kim, Y.

J. Kim, J. J. Lee, S. Lee, and Y. Kim, “Physical media dependent prototype for 10-Gigabit-capable PON OLT,” ETRIJ 35(2), 245–252 (2013).
[CrossRef]

Krimmel, H.-G.

Kubo, R.

Lealman, I.

Lee, D.

H. H. Lee, D. Lee, H. S. Chung, and H. J. Lee, “Effective suppression of signal-wavelength dependent transients in a pump-controlled L-band EDFA,” IEEE Photon. Technol. Lett. 16(6), 1462–1464 (2004).
[CrossRef]

Lee, H. H.

H. H. Lee, K. Kim, J. Lee, and S. Lee, “Efficient power-saving 10-Gb/s ONU using uplink usage-dependent sleep mode control algorithm in WDM-PON,” ETRI J. 35(2), 253–258 (2013).
[CrossRef]

H. H. Lee, D. Lee, H. S. Chung, and H. J. Lee, “Effective suppression of signal-wavelength dependent transients in a pump-controlled L-band EDFA,” IEEE Photon. Technol. Lett. 16(6), 1462–1464 (2004).
[CrossRef]

Lee, H. J.

H. H. Lee, D. Lee, H. S. Chung, and H. J. Lee, “Effective suppression of signal-wavelength dependent transients in a pump-controlled L-band EDFA,” IEEE Photon. Technol. Lett. 16(6), 1462–1464 (2004).
[CrossRef]

Lee, J.

H. H. Lee, K. Kim, J. Lee, and S. Lee, “Efficient power-saving 10-Gb/s ONU using uplink usage-dependent sleep mode control algorithm in WDM-PON,” ETRI J. 35(2), 253–258 (2013).
[CrossRef]

K. Kim, J. Lee, S. Lee, J. Lee, and Y. Jang, “Low-cost, low-power, high-capacity 3R OEO-Type reach extender for a long-reach TDMA-PON,” ETRI. J. 34(3), 352–360 (2012).
[CrossRef]

K. Kim, J. Lee, S. Lee, J. Lee, and Y. Jang, “Low-cost, low-power, high-capacity 3R OEO-Type reach extender for a long-reach TDMA-PON,” ETRI. J. 34(3), 352–360 (2012).
[CrossRef]

Lee, J. J.

J. Kim, J. J. Lee, S. Lee, and Y. Kim, “Physical media dependent prototype for 10-Gigabit-capable PON OLT,” ETRIJ 35(2), 245–252 (2013).
[CrossRef]

Lee, S.

J. Kim, J. J. Lee, S. Lee, and Y. Kim, “Physical media dependent prototype for 10-Gigabit-capable PON OLT,” ETRIJ 35(2), 245–252 (2013).
[CrossRef]

H. H. Lee, K. Kim, J. Lee, and S. Lee, “Efficient power-saving 10-Gb/s ONU using uplink usage-dependent sleep mode control algorithm in WDM-PON,” ETRI J. 35(2), 253–258 (2013).
[CrossRef]

K. Kim, J. Lee, S. Lee, J. Lee, and Y. Jang, “Low-cost, low-power, high-capacity 3R OEO-Type reach extender for a long-reach TDMA-PON,” ETRI. J. 34(3), 352–360 (2012).
[CrossRef]

Luo, G.

Maxwell, G.

Moodie, D. G.

Mueller, M.

Nagel, J. A.

Nakaji, H.

H. Nakaji and M. Shigematsu, “Wavelength dependence of dynamic gain fluctuation in a high-speed automatic gain controlled erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 15(2), 203–205 (2003).
[CrossRef]

Naughton, A.

Nesset, D.

Ossieur, P.

Poustie, A.

Rogers, D.

Sakamoto, T.

Shigematsu, M.

H. Nakaji and M. Shigematsu, “Wavelength dependence of dynamic gain fluctuation in a high-speed automatic gain controlled erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 15(2), 203–205 (2003).
[CrossRef]

Smith, D. W.

Townsend, P. D.

Ujikawa, H.

Wong, E.

Wyatt, R.

Yoshimoto, N.

Zyskind, J. L.

ETRI J.

H. H. Lee, K. Kim, J. Lee, and S. Lee, “Efficient power-saving 10-Gb/s ONU using uplink usage-dependent sleep mode control algorithm in WDM-PON,” ETRI J. 35(2), 253–258 (2013).
[CrossRef]

ETRI. J.

K. Kim, J. Lee, S. Lee, J. Lee, and Y. Jang, “Low-cost, low-power, high-capacity 3R OEO-Type reach extender for a long-reach TDMA-PON,” ETRI. J. 34(3), 352–360 (2012).
[CrossRef]

ETRIJ

J. Kim, J. J. Lee, S. Lee, and Y. Kim, “Physical media dependent prototype for 10-Gigabit-capable PON OLT,” ETRIJ 35(2), 245–252 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Nakaji and M. Shigematsu, “Wavelength dependence of dynamic gain fluctuation in a high-speed automatic gain controlled erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 15(2), 203–205 (2003).
[CrossRef]

H. H. Lee, D. Lee, H. S. Chung, and H. J. Lee, “Effective suppression of signal-wavelength dependent transients in a pump-controlled L-band EDFA,” IEEE Photon. Technol. Lett. 16(6), 1462–1464 (2004).
[CrossRef]

J. T. Ahn and K. H. Kim, “All-optical gain-clamped Erbium-doped fiber amplifier with improved noise figure and freedom from relaxation oscillation,” IEEE Photon. Technol. Lett. 16(1), 84–86 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Opt. Express

Other

FSAN next generation PON task group, http://www.fsan.org/task-groups/ngpon/ .

40-Gigabit-capable passive optical networks (NG-PON2): Physical media dependent (PMD) layer specification, ITU-T G.989.2 (2013).

X. Qiu, “Burst mode receiver technology for short synchronization,”, OFC/NFOEC 2013, Tutorial OW3G.4 (2013).

Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40 Gb/s time and wavelength division multiplexed passive optical network prototype system,” OFC/NFOEC 2012, paper PDP5D.7 (2012).

40-Gigabit-capable passive optical networks (NG-PON2): Transmission convergence (TC) layer specification, ITU-T G.989.3, under study in ITU-T SG15.

J. Sugawa, H. Ikeda, S. Matsuda, and M. Suzuki, “Optical amplifier technologies for high power budget PON Systems,” COIN2012, paper WF.3 (2012).

Licomm Corp, “XOA,” http://licomm.com/2011/product/product_detail.asp?Depth1=1&Depth2=4&Seq=96 .

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifier, (Academic Press, 1999).

Y. Awaji, H. Furukawa, B. J. Puttnam, and N. Wada, “Burst-mode optical amplifier,” OFC/NFOEC 2010, paper OTh14 (2010).

N. Suzuki and J. Nakagawa, “First demonstration of full burst optical amplified GE-PON uplink with extended system budget of up to 128 ONU splits and 58 km reach,” ECOC 2005, paper Tu1.3.3 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

ITU-T XG-PON upstream physical (PHY) layer overhead [6, 7]. The TWDM-PON will have the same overhead configuration [8].

Fig. 2
Fig. 2

TWDM-PON upstream transmissions (a) when all ONUs are in operation (b) when only a few ONUs are in operation.

Fig. 3
Fig. 3

(a) OGC-EDFA with saturation signal. (b) Experimental setup to measure overshoot and optical eye.

Fig. 4
Fig. 4

Gain (closed symbols) and noise figures (NF; open symbols) of the EDFA.

Fig. 5
Fig. 5

Oscilloscope traces of the (a) C-EDFA and (b) OGC-EDFA.

Fig. 6
Fig. 6

Accumulated eye diagrams of C-EDFA (a) 0.03 μs, (b) 125 μs, and (c) 1878 μs) and OGC-EDFA (d) 0.03 μs, (e) 125 μs, and (f) 1878 μs).

Fig. 7
Fig. 7

Overshoot as a function of the interval time for the (a) C-EDFA and (b) OGC-EDFA.

Fig. 8
Fig. 8

(a) Overshoot as a function of the saturation signal power. (b) Saturation signal power required to maintain an overshoot of less than 101% as a function of the EDFA input power.

Fig. 9
Fig. 9

Accumulated eye diagrams the OGC-EDFA with 1549.3 nm saturation signal (a) 0.03 μs. (b) 125 μs. (c) 1878 μs.

Fig. 10
Fig. 10

(a) Explanation of power penalty increase with non-optimized decision threshold level. (b) Power penalty as a function of the decision level offset.

Fig. 11
Fig. 11

(a) OGC-EDFA employing a ring laser cavity. (b) Oscilloscope trace of a signal with an optical pulse width of 125 μs and an interval time of 1,878 μs. (c) Accumulated eye diagram of the OGC-EDFA (1,878 μs).

Tables (1)

Tables Icon

Table 1 Comparison of EDFA requirements

Metrics