Abstract

We investigate the behaviour of a short cavity swept source laser with an intra cavity swept filter both experimentally and theoretically. We characterise the behaviour of the device with real-time intensity measurements using a fast digital oscilloscope, showing several distinct regimes, most notably regions of mode-hopping, frequency sliding mode-locking and chaos. A delay differential equation model is proposed that shows close agreement with the experimental results. The model is also used to determine important quantities such as the minimum and maximum sweep speeds for the mode-locking regime. It is also shown that by varying the filter width the maximum sweep speed can be increased but at a cost of increasing the instantaneous linewidth. The consequent impacts on optical coherence tomography applications are analysed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bilenca, S. H. Yun, G. J. Tearney, and B. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31, 760–762 (2006).
    [CrossRef] [PubMed]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
    [CrossRef] [PubMed]
  4. V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
    [CrossRef]
  5. Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
    [CrossRef]
  6. B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Optical Fiber Technology 19, 729–740 (2013).
    [CrossRef]
  7. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11, 2183–2189 (2003).
    [CrossRef] [PubMed]
  8. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express 4, 1890–1908 (2013).
    [CrossRef] [PubMed]
  9. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [CrossRef] [PubMed]
  10. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in “BiOS,” (International Society for Optics and Photonics, 2010), pp. 75541F.
  11. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
    [CrossRef] [PubMed]
  12. E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (IEEE, 2012), pp. 1–4.
  13. W. Atia, M. Kuznetsov, and D. Flanders, “Linearized swept laser source for optical coherence analysis system,” (2009). US Patent App. 12/027,710.
  14. B. Johnson and D. Flanders, “Laser swept source with controlled mode locking for OCT medical imaging,” (2013). EP Patent App. EP20,110,808,812.
  15. S. Slepneva, B. Kelleher, B. O’Shaughnessy, S.P. Hegarty, A. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express 21, 19240–19251 (2013).
    [CrossRef] [PubMed]
  16. A.G. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
    [CrossRef]
  17. A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004).
    [CrossRef] [PubMed]
  18. A.G. Vladimirov and D. Turaev, “A new model for a mode-locked semiconductor laser,” Radiophys. and Quantum Electronics 47, 769–776 (2004).
    [CrossRef]
  19. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17, 24013–24019 (2009).
    [CrossRef]
  20. R. Huber, M. Wojtkowski, K. Taira, and J.G. Fujimoto, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [CrossRef] [PubMed]

2014

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

2013

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Optical Fiber Technology 19, 729–740 (2013).
[CrossRef]

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express 4, 1890–1908 (2013).
[CrossRef] [PubMed]

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

S. Slepneva, B. Kelleher, B. O’Shaughnessy, S.P. Hegarty, A. Vladimirov, and G. Huyet, “Dynamics of Fourier domain mode-locked lasers,” Opt. Express 21, 19240–19251 (2013).
[CrossRef] [PubMed]

2012

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

2009

2006

2005

2004

A.G. Vladimirov and D. Turaev, “A new model for a mode-locked semiconductor laser,” Radiophys. and Quantum Electronics 47, 769–776 (2004).
[CrossRef]

A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004).
[CrossRef] [PubMed]

2003

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

1993

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Atia, W.

W. Atia, M. Kuznetsov, and D. Flanders, “Linearized swept laser source for optical coherence analysis system,” (2009). US Patent App. 12/027,710.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in “BiOS,” (International Society for Optics and Photonics, 2010), pp. 75541F.

Avrutin, E.

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (IEEE, 2012), pp. 1–4.

Biedermann, B.

Bilenca, A.

Bouma, B.

Brugaletta, S.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Cable, A. E.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Choma, M. A.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

Duker, J. S.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

Farooq, V.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Flanders, D.

B. Johnson and D. Flanders, “Laser swept source with controlled mode locking for OCT medical imaging,” (2013). EP Patent App. EP20,110,808,812.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in “BiOS,” (International Society for Optics and Photonics, 2010), pp. 75541F.

W. Atia, M. Kuznetsov, and D. Flanders, “Linearized swept laser source for optical coherence analysis system,” (2009). US Patent App. 12/027,710.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef] [PubMed]

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Fujimoto, J.G.

Gogas, B. D.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Gomez-Lara, J.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

Hee, M. R.

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hegarty, S.P.

Heo, J. H.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Huang, D.

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Huyet, G.

Izatt, J.

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Izatt, J. A.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

Jayaraman, V.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

Jiang, J.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

Jirauschek, C.

Johnson, B.

B. Johnson and D. Flanders, “Laser swept source with controlled mode locking for OCT medical imaging,” (2013). EP Patent App. EP20,110,808,812.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in “BiOS,” (International Society for Optics and Photonics, 2010), pp. 75541F.

Kampik, A.

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express 4, 1890–1908 (2013).
[CrossRef] [PubMed]

Kelleher, B.

Kim, Y. H.

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Optical Fiber Technology 19, 729–740 (2013).
[CrossRef]

Klein, T.

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express 4, 1890–1908 (2013).
[CrossRef] [PubMed]

Kozyreff, G.

Kuznetsov, M.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in “BiOS,” (International Society for Optics and Photonics, 2010), pp. 75541F.

W. Atia, M. Kuznetsov, and D. Flanders, “Linearized swept laser source for optical coherence analysis system,” (2009). US Patent App. 12/027,710.

Lee, B. H.

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Optical Fiber Technology 19, 729–740 (2013).
[CrossRef]

Lin, C.

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J. J.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

Lu, C. D.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

Magro, M.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Min, E. J.

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Optical Fiber Technology 19, 729–740 (2013).
[CrossRef]

Miyashin, M.

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Nakajima, Y.

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Neubauer, A.

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express 4, 1890–1908 (2013).
[CrossRef] [PubMed]

O’Shaughnessy, B.

Okamura, T.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Onuma, Y.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Potsaid, B.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

Puliafito, C.

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Radu, M. D.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Reznicek, L.

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express 4, 1890–1908 (2013).
[CrossRef] [PubMed]

Sadr, A.

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Sarunic, M. V.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

Schuman, J.

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shimada, Y.

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Slepneva, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sumi, Y.

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Swanson, E. A.

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tagami, J.

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Taira, K.

Takagi, Y.

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Tearney, G. J.

Turaev, D.

A.G. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[CrossRef]

A.G. Vladimirov and D. Turaev, “A new model for a mode-locked semiconductor laser,” Radiophys. and Quantum Electronics 47, 769–776 (2004).
[CrossRef]

A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004).
[CrossRef] [PubMed]

van Bochove, G.

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Vladimirov, A.

Vladimirov, A.G.

A.G. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[CrossRef]

A.G. Vladimirov and D. Turaev, “A new model for a mode-locked semiconductor laser,” Radiophys. and Quantum Electronics 47, 769–776 (2004).
[CrossRef]

Wada, I.

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Wieser, W.

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express 4, 1890–1908 (2013).
[CrossRef] [PubMed]

Wojtkowski, M.

Yang, C.

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

Yun, S. H.

Zhang, L.

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (IEEE, 2012), pp. 1–4.

Biomedical Optics Express

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomedical Optics Express 4, 1890–1908 (2013).
[CrossRef] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source oct with vertical-cavity surface emitting lasers,” Biomedical Optics Express 3, 2733 (2012).
[CrossRef] [PubMed]

European heart journal

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, G. van Bochove, and et al., “Three-dimensional optical frequency domain imaging in conventional percutaneous coronary intervention: the potential for clinical application,” European heart journal 34, 875–885 (2013).
[CrossRef]

Journal of Biomedical Optics

Y. Nakajima, Y. Shimada, A. Sadr, I. Wada, M. Miyashin, Y. Takagi, J. Tagami, and Y. Sumi, “Detection of occlusal caries in primary teeth using swept source optical coherence tomography,” Journal of Biomedical Optics 19, 016020 (2014).
[CrossRef]

Opt. Express

Opt. Lett.

Optical Fiber Technology

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Optical Fiber Technology 19, 729–740 (2013).
[CrossRef]

Optics Express

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express 11, 2183–2189 (2003).
[CrossRef] [PubMed]

Optics letters

E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Optics letters 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Phys. Rev. A

A.G. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[CrossRef]

Radiophys. and Quantum Electronics

A.G. Vladimirov and D. Turaev, “A new model for a mode-locked semiconductor laser,” Radiophys. and Quantum Electronics 47, 769–776 (2004).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications,” in “BiOS,” (International Society for Optics and Photonics, 2010), pp. 75541F.

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” in Transparent Optical Networks (ICTON), 2012 14th International Conference on, (IEEE, 2012), pp. 1–4.

W. Atia, M. Kuznetsov, and D. Flanders, “Linearized swept laser source for optical coherence analysis system,” (2009). US Patent App. 12/027,710.

B. Johnson and D. Flanders, “Laser swept source with controlled mode locking for OCT medical imaging,” (2013). EP Patent App. EP20,110,808,812.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The evolution of the central wavelength of the output. Plots of the intensity at the marked points are shown in Fig. 2. The inset shows the optical spectrum as measured on the OSA.

Fig. 2
Fig. 2

Representative intensity traces. Sub-figure labels (a), (b) (c) etc. correspond to the points with the same labels in Fig. 1

Fig. 3
Fig. 3

Laser dynamics at low filter speed. The zero point on the time axis corresponds to the change of the sweep direction at 1255nm. (a) Intensity and (b) evolution of the beating frequency. The y-axis in (b) shows the frequency of the output relative to the frequency of the TLS.

Fig. 4
Fig. 4

Figures on the left are experimental. Figures on the right are numerical. (a) and (b) show zooms of mode-hopping behaviour close to the turning point at a sweep-speed of −0.1 GHz/ns; (c) and (d) show zooms of the periodic pulse train from the forward part of the wavelength sweep at a sweep-speed of −1 GHz/ns; (e) and (f) show zooms of the chaotic output from the backward part of the sweep at a sweep-speed of 1.3 GHz/ns.

Fig. 5
Fig. 5

Numerically simulated average output power versus sweep speed for different filter-widths.

Fig. 6
Fig. 6

(a) Numerically simulated maximum sweep-speed versus filter width and best-fit line. (b) Numerically simulated linewidth for an average output power of 0.6 (a.u.) versus filter width and best fit line.

Tables (1)

Tables Icon

Table 1 Parameter values for simulations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t A i Δ ( t ) A + Γ A = Γ κ e ( 1 i α ) G ( t T ) / 2 A ( t T ) ,
t G = γ [ g 0 G ( e G 1 ) | A | 2 ] ,
t a + Γ a = Γ κ e ( 1 i α ) G ( t T ) / 2 + i t t T Δ ( τ ) d τ a ( t T ) ,
t G = γ [ g 0 G ( e G 1 ) | a | 2 ] .
t a + Γ a = Γ κ e ( 1 i α ) G ( t T ) / 2 i v T t a ( t T ) ,

Metrics