Abstract

Fourier transform infrared (FT-IR) imaging spectrometers are almost universally used to record microspectroscopic imaging data in the mid-infrared (mid-IR) spectral region. While the commercial standard, interferometry necessitates collection of large spectral regions, requires a large data handling overhead for microscopic imaging and is slow. Here we demonstrate an approach for mid-IR spectroscopic imaging at selected discrete wavelengths using narrowband resonant filtering of a broadband thermal source, enabled by high-performance guided-mode Fano resonances in one-layer, large-area mid-IR photonic crystals on a glass substrate. The microresonant devices enable discrete frequency IR (DF-IR), in which a limited number of wavelengths that are of interest are recorded using a mechanically robust instrument. This considerably simplifies instrumentation as well as overhead of data acquisition, storage and analysis for large format imaging with array detectors. To demonstrate the approach, we perform DF-IR spectral imaging of a polymer USAF resolution target and human tissue in the C−H stretching region (2600−3300 cm−1). DF-IR spectroscopy and imaging can be generalized to other IR spectral regions and can serve as an analytical tool for environmental and biomedical applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
    [CrossRef] [PubMed]
  2. I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
    [CrossRef] [PubMed]
  3. P. Colarusso, L. H. Kidder, I. W. Levin, J. C. Fraser, J. F. Arens, and E. N. Lewis, “Infrared spectroscopic imaging: From planetary to cellular systems,” Appl. Spectrosc. 52(3), 106–120 (1998).
    [CrossRef]
  4. C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005).
    [CrossRef] [PubMed]
  5. G. Steiner and E. Koch, “Trends in Fourier transform infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(3), 671–678 (2009).
    [CrossRef] [PubMed]
  6. C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007).
    [CrossRef] [PubMed]
  7. R. Wysoczanski and K. Tani, “Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: An example from the Izu-Bonin arc,” J. Volcanol. Geotherm. Res. 156(3-4), 302–314 (2006).
    [CrossRef]
  8. S. Sabbah, P. Rusch, J.-H. Gerhard, and R. Harig, “Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy,” Proc. SPIE 8743, 874317 (2013).
    [CrossRef]
  9. R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
    [CrossRef] [PubMed]
  10. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley-Interscience, Hoboken, NJ, 2007).
  11. R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67(1), 93–105 (2013).
    [CrossRef] [PubMed]
  12. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
    [CrossRef] [PubMed]
  13. D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23(4), 469–474 (2005).
    [CrossRef] [PubMed]
  14. R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta 1758(7), 830–845 (2006).
    [CrossRef] [PubMed]
  15. C. D. Craver, ed., The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, Kirkwood, MO, 1982).
  16. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
    [CrossRef]
  17. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [CrossRef]
  18. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [CrossRef]
  19. M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84(23), 10366–10372 (2012).
    [CrossRef] [PubMed]
  20. D. L. Elmore, M.-W. Tsao, S. Frisk, D. B. Chase, and J. F. Rabolt, “Design and performance of a planar array infrared spectrograph that operates in the 3400 to 2000 cm−1 region,” Appl. Spectrosc. 56(2), 145–149 (2002).
    [CrossRef]
  21. S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
    [CrossRef]
  22. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [CrossRef]
  23. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
    [CrossRef]
  24. H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
    [CrossRef]
  25. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
    [CrossRef]
  26. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
    [CrossRef]
  27. I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
    [CrossRef]
  28. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
    [CrossRef]
  29. M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
    [CrossRef]
  30. J. A. Mason, D. C. Adams, Z. Johnson, S. Smith, A. W. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18(24), 25192–25198 (2010).
    [CrossRef] [PubMed]
  31. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [CrossRef] [PubMed]
  32. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [CrossRef]
  33. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  34. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
    [CrossRef]
  35. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [CrossRef]
  36. H. A. Macleod, “Band-pass filters,” in Thin-Film Optical Filters, 4th Edition (CRC Press, 2010).
  37. L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
    [CrossRef]
  38. W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays,” Opt. Express 13(12), 4406–4413 (2005).
    [CrossRef] [PubMed]
  39. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
    [CrossRef]
  40. Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
    [CrossRef] [PubMed]
  41. S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004).
    [CrossRef]
  42. J. Zhang, S. Zhang, D. Li, A. Neumann, C. Hains, A. Frauenglass, and S. R. Brueck, “Infrared transmission resonances in double-layered, complementary-structure metallic gratings,” Opt. Express 15(14), 8737–8744 (2007).
    [CrossRef] [PubMed]
  43. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [CrossRef]
  44. J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19(24), 24182–24197 (2011).
    [CrossRef] [PubMed]
  45. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  46. A. Hessel and A. A. Oliner, “A new theory of Wood's anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [CrossRef]
  47. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
    [CrossRef]
  48. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
    [CrossRef] [PubMed]
  49. Lj. Babić and M. J. A. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18(25), 26569–26582 (2010).
    [CrossRef] [PubMed]
  50. K. K. Mehta, J. S. Orcutt, and R. J. Ram, “Fano line shapes in transmission spectra of silicon photonic crystal resonators,” Appl. Phys. Lett. 102(8), 081109 (2013).
    [CrossRef]
  51. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  52. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  53. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
    [CrossRef]
  54. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
    [CrossRef]
  55. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [CrossRef] [PubMed]
  56. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
    [CrossRef] [PubMed]
  57. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [CrossRef] [PubMed]
  58. J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).
  59. S. L. Chuang, Physics of Optoelectronic Devices (Wiley-Interscience, New York, 1995).
  60. M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
    [CrossRef]
  61. M. Klanjšek Gunde and M. Maček, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi 183, 439–449 (2001).
    [CrossRef]
  62. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003).
    [CrossRef] [PubMed]
  63. Due to interference of the waves traveling to the right and to the left, the amplitude of the electric field |E(x)| ∝ |exp(ikmodex) ± exp(-ikmodex)| ∝ |cos(kmodex)| or |sin(kmodex)|. Therefore, |E(x)| is a standing wave with a period of π/kmode in the x direction. When kmode = 2π/Λ, the period of |E(x)| becomes Λ/2.
  64. A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
    [CrossRef] [PubMed]
  65. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
    [CrossRef]
  66. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [CrossRef]
  67. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, New York, 2007).
  68. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
    [CrossRef] [PubMed]
  69. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
    [CrossRef] [PubMed]
  70. R. Bhargava, S.-Q. Wang, and J. L. Koenig, “FT-IR imaging of the interface in multicomponent systems using optical effects induced by differences in refractive index,” Appl. Spectrosc. 52(3), 323–328 (1998).
    [CrossRef]
  71. R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007).
    [CrossRef] [PubMed]

2013

S. Sabbah, P. Rusch, J.-H. Gerhard, and R. Harig, “Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy,” Proc. SPIE 8743, 874317 (2013).
[CrossRef]

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67(1), 93–105 (2013).
[CrossRef] [PubMed]

K. K. Mehta, J. S. Orcutt, and R. J. Ram, “Fano line shapes in transmission spectra of silicon photonic crystal resonators,” Appl. Phys. Lett. 102(8), 081109 (2013).
[CrossRef]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[CrossRef]

2012

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[CrossRef] [PubMed]

R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
[CrossRef] [PubMed]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[CrossRef] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

2011

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19(24), 24182–24197 (2011).
[CrossRef] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

2010

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Lj. Babić and M. J. A. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express 18(25), 26569–26582 (2010).
[CrossRef] [PubMed]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

J. A. Mason, D. C. Adams, Z. Johnson, S. Smith, A. W. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18(24), 25192–25198 (2010).
[CrossRef] [PubMed]

2009

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

G. Steiner and E. Koch, “Trends in Fourier transform infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(3), 671–678 (2009).
[CrossRef] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

2008

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

2007

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

J. Zhang, S. Zhang, D. Li, A. Neumann, C. Hains, A. Frauenglass, and S. R. Brueck, “Infrared transmission resonances in double-layered, complementary-structure metallic gratings,” Opt. Express 15(14), 8737–8744 (2007).
[CrossRef] [PubMed]

C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007).
[CrossRef] [PubMed]

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007).
[CrossRef] [PubMed]

2006

R. Wysoczanski and K. Tani, “Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: An example from the Izu-Bonin arc,” J. Volcanol. Geotherm. Res. 156(3-4), 302–314 (2006).
[CrossRef]

R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta 1758(7), 830–845 (2006).
[CrossRef] [PubMed]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

2005

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays,” Opt. Express 13(12), 4406–4413 (2005).
[CrossRef] [PubMed]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005).
[CrossRef] [PubMed]

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
[CrossRef] [PubMed]

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23(4), 469–474 (2005).
[CrossRef] [PubMed]

2004

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004).
[CrossRef]

2003

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[CrossRef]

2002

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

D. L. Elmore, M.-W. Tsao, S. Frisk, D. B. Chase, and J. F. Rabolt, “Design and performance of a planar array infrared spectrograph that operates in the 3400 to 2000 cm−1 region,” Appl. Spectrosc. 56(2), 145–149 (2002).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

2001

M. Klanjšek Gunde and M. Maček, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi 183, 439–449 (2001).
[CrossRef]

1998

1985

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[CrossRef]

1965

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Abbas, M. N.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

Adams, D. C.

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Andreani, L. C.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Arens, J. F.

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Arts, R.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[CrossRef]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Babic, Lj.

Bao, Y.-J.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Bardhan, R.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Barron, C.

C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005).
[CrossRef] [PubMed]

Beigang, R.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Bhargava, R.

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67(1), 93–105 (2013).
[CrossRef] [PubMed]

R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66(10), 1091–1120 (2012).
[CrossRef] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[CrossRef] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19(24), 24182–24197 (2011).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007).
[CrossRef] [PubMed]

R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta 1758(7), 830–845 (2006).
[CrossRef] [PubMed]

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23(4), 469–474 (2005).
[CrossRef] [PubMed]

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
[CrossRef] [PubMed]

R. Bhargava, S.-Q. Wang, and J. L. Koenig, “FT-IR imaging of the interface in multicomponent systems using optical effects induced by differences in refractive index,” Appl. Spectrosc. 52(3), 323–328 (1998).
[CrossRef]

Bishop, S. R.

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004).
[CrossRef]

Biswas, R.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Boller, K.-J.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Bour, D.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Brueck, S. R.

Brueck, S. R. J.

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Carney, P. S.

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67(1), 93–105 (2013).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

Cederberg, J. G.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Chang, R.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Chang, Y.-C.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

Chang, Y.-T.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Chase, D. B.

Chen, H.-H.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Cheng, C.-W.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

Chiang, C.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Chuang, T.-H.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Coe, J. V.

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004).
[CrossRef]

Colarusso, P.

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Corzine, S.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Cunningham, B. T.

J.-N. Liu, M. V. Schulmerich, R. Bhargava, and B. T. Cunningham, “Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy,” Opt. Express 19(24), 24182–24197 (2011).
[CrossRef] [PubMed]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Daly, J.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Davis, A. W.

Davis, B. J.

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

de Dood, M. J. A.

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[CrossRef]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Diehl, L.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Ding, C. G.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

El-Kady, I.

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Elmore, D. L.

Faist, J.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Fallnich, C.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Fan, S.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

Fan, W.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Fernandez, D. C.

R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta 1758(7), 830–845 (2006).
[CrossRef] [PubMed]

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23(4), 469–474 (2005).
[CrossRef] [PubMed]

Fernandez, F. M.

C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007).
[CrossRef] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

Fraser, J. C.

Frauenglass, A.

Frisk, S.

Fujimura, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Galli, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Gelber, M. K.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[CrossRef] [PubMed]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Gerhard, J.-H.

S. Sabbah, P. Rusch, J.-H. Gerhard, and R. Harig, “Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy,” Proc. SPIE 8743, 874317 (2013).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Giovannini, M.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

Greenwald, A.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Gross, P.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Hagen, R.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Hains, C.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Harig, R.

S. Sabbah, P. Rusch, J.-H. Gerhard, and R. Harig, “Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy,” Proc. SPIE 8743, 874317 (2013).
[CrossRef]

Hatade, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Hessel, A.

Hewitt, S. M.

R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta 1758(7), 830–845 (2006).
[CrossRef] [PubMed]

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23(4), 469–474 (2005).
[CrossRef] [PubMed]

Hirschmugl, C. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

Hofler, G.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Huang, T. D.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Ikeda, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[CrossRef]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Inoue, Y.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Ip, J.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Johnson, E.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Johnson, Z.

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Kajdacsy-Balla, A.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Kanakugi, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Kasaya, T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Kazarian, S. G.

C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007).
[CrossRef] [PubMed]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Kidder, L. H.

Kitagawa, S.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Klanjšek Gunde, M.

M. Klanjšek Gunde and M. Maček, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi 183, 439–449 (2001).
[CrossRef]

Koch, E.

G. Steiner and E. Koch, “Trends in Fourier transform infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(3), 671–678 (2009).
[CrossRef] [PubMed]

Kodali, A. K.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Koenig, J. L.

Kole, M. R.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[CrossRef] [PubMed]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Krauss, T. F.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

Kuipers, L.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Lassiter, J. B.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

LeBlanc, A. R. H.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Lee, S.-C.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Lei, D. Y.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[CrossRef] [PubMed]

Levin, I. W.

R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta 1758(7), 830–845 (2006).
[CrossRef] [PubMed]

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23(4), 469–474 (2005).
[CrossRef] [PubMed]

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
[CrossRef] [PubMed]

P. Colarusso, L. H. Kidder, I. W. Levin, J. C. Fraser, J. F. Arens, and E. N. Lewis, “Infrared spectroscopic imaging: From planetary to cellular systems,” Appl. Spectrosc. 52(3), 106–120 (1998).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Lewis, E. N.

Li, D.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Lin, S.-Y.

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

Liu, J.-N.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Lu, W.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Lu, X.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Macek, M.

M. Klanjšek Gunde and M. Maček, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi 183, 439–449 (2001).
[CrossRef]

Macias, V.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Maier, S. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Malloy, K. J.

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

J. A. Mason, D. C. Adams, Z. Johnson, S. Smith, A. W. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18(24), 25192–25198 (2010).
[CrossRef] [PubMed]

Mattson, E. C.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Maulini, R.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

McNeal, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Mehta, K. K.

K. K. Mehta, J. S. Orcutt, and R. J. Ram, “Fano line shapes in transmission spectra of silicon photonic crystal resonators,” Appl. Phys. Lett. 102(8), 081109 (2013).
[CrossRef]

Meng, C.-Y.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Mills, E. N. C.

C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005).
[CrossRef] [PubMed]

Ming, N.-B.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Morris, G. M.

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Mukherjee, S.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Nasse, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Nazabal, V.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[CrossRef] [PubMed]

Neumann, A.

Newton, P. N.

C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007).
[CrossRef] [PubMed]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[CrossRef]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Nyadong, L.

C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007).
[CrossRef] [PubMed]

O’Faolain, L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Okada, M.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Oliner, A. A.

Orcutt, J. S.

K. K. Mehta, J. S. Orcutt, and R. J. Ram, “Fano line shapes in transmission spectra of silicon photonic crystal resonators,” Appl. Phys. Lett. 102(8), 081109 (2013).
[CrossRef]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Parker, M. L.

C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005).
[CrossRef] [PubMed]

Peng, R.-W.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Peng, S.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Portalupi, S. L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Pralle, M.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Prodan, L.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Puscasu, I.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

Rabolt, J. F.

Ram, R. J.

K. K. Mehta, J. S. Orcutt, and R. J. Ram, “Fano line shapes in transmission spectra of silicon photonic crystal resonators,” Appl. Phys. Lett. 102(8), 081109 (2013).
[CrossRef]

Reddy, R. K.

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67(1), 93–105 (2013).
[CrossRef] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[CrossRef] [PubMed]

Reininger, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Reisz, R. R.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Ricci, C.

C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007).
[CrossRef] [PubMed]

Roberts, E. M.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Rogers, T. M.

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004).
[CrossRef]

Rouau, X.

C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005).
[CrossRef] [PubMed]

Rubin, M.

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[CrossRef]

Rusch, P.

S. Sabbah, P. Rusch, J.-H. Gerhard, and R. Harig, “Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy,” Proc. SPIE 8743, 874317 (2013).
[CrossRef]

Sabbah, S.

S. Sabbah, P. Rusch, J.-H. Gerhard, and R. Harig, “Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy,” Proc. SPIE 8743, 874317 (2013).
[CrossRef]

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[CrossRef]

Schaich, W. L.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

Schirmacher, A.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

Schmidt, M. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Schulmerich, M.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Schulmerich, M. V.

Shaner, E. A.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

Shao, J.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Shieh, D.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Shih, M.-H.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

Shu, D.-J.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

J. A. Mason, D. C. Adams, Z. Johnson, S. Smith, A. W. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18(24), 25192–25198 (2010).
[CrossRef] [PubMed]

Sobhani, H.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Stafford, A. D.

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Stein, K.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Steiner, G.

G. Steiner and E. Koch, “Trends in Fourier transform infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(3), 671–678 (2009).
[CrossRef] [PubMed]

Sullivan, C.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Tani, K.

R. Wysoczanski and K. Tani, “Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: An example from the Izu-Bonin arc,” J. Volcanol. Geotherm. Res. 156(3-4), 302–314 (2006).
[CrossRef]

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

Thurman, S. T.

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Troccoli, M.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Tsai, M.-W.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Tsao, M.-W.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[CrossRef]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[CrossRef]

Walsh, M. J.

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67(1), 93–105 (2013).
[CrossRef] [PubMed]

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Wang, M.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Wang, S.-Q.

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

J. A. Mason, D. C. Adams, Z. Johnson, S. Smith, A. W. Davis, and D. Wasserman, “Selective thermal emission from patterned steel,” Opt. Express 18(24), 25192–25198 (2010).
[CrossRef] [PubMed]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

Williams, S. M.

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004).
[CrossRef]

Wilson, R. H.

C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005).
[CrossRef] [PubMed]

Wondraczek, L.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[CrossRef] [PubMed]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Wysoczanski, R.

R. Wysoczanski and K. Tani, “Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: An example from the Izu-Bonin arc,” J. Volcanol. Geotherm. Res. 156(3-4), 302–314 (2006).
[CrossRef]

Yablonskii, A. L.

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

Yamamoto, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

Yang, C.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

Yen, G.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Zhang, J.

Zhang, S.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Zhong, S.

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

G. Steiner and E. Koch, “Trends in Fourier transform infrared spectroscopic imaging,” Anal. Bioanal. Chem. 394(3), 671–678 (2009).
[CrossRef] [PubMed]

C. Ricci, L. Nyadong, F. M. Fernandez, P. N. Newton, and S. G. Kazarian, “Combined Fourier-transform infrared imaging and desorption electrospray-ionization linear ion-trap mass spectrometry for analysis of counterfeit antimalarial tablets,” Anal. Bioanal. Chem. 387(2), 551–559 (2007).
[CrossRef] [PubMed]

R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007).
[CrossRef] [PubMed]

Anal. Chem.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[CrossRef] [PubMed]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010).
[CrossRef] [PubMed]

B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

I. W. Levin and R. Bhargava, “Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition,” Annu. Rev. Phys. Chem. 56(1), 429–474 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92(3), 305–311 (2008).
[CrossRef]

Appl. Phys. Lett.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011).
[CrossRef]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[CrossRef]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83(4), 593–595 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

H. T. Miyazaki, K. Ikeda, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Thermal emission of two-color polarized infrared waves from integrated plasmon cavities,” Appl. Phys. Lett. 92(14), 141114 (2008).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[CrossRef]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett. 92(23), 233102 (2008).
[CrossRef]

K. K. Mehta, J. S. Orcutt, and R. J. Ram, “Fano line shapes in transmission spectra of silicon photonic crystal resonators,” Appl. Phys. Lett. 102(8), 081109 (2013).
[CrossRef]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength gratings,” Appl. Phys. Lett. 90(19), 191102 (2007).
[CrossRef]

S. M. Williams, A. D. Stafford, T. M. Rogers, S. R. Bishop, and J. V. Coe, “Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission,” Appl. Phys. Lett. 85(9), 1472–1474 (2004).
[CrossRef]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Single-peak narrow-bandwidth mid-infrared thermal emitters based on quantum wells and photonic crystals,” Appl. Phys. Lett. 102(19), 191110 (2013).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Appl. Spectrosc.

Biochim. Biophys. Acta

R. Bhargava, D. C. Fernandez, S. M. Hewitt, and I. W. Levin, “High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data,” Biochim. Biophys. Acta 1758(7), 830–845 (2006).
[CrossRef] [PubMed]

Chem. Phys. Lett.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[CrossRef]

J. Appl. Phys.

I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys. 98(1), 013531 (2005).
[CrossRef]

J. Phys. D Appl. Phys.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K.-J. Boller, “Mid-IR transmission of a large-area 2D silicon photonic crystal slab,” J. Phys. D Appl. Phys. 41(13), 135105 (2008).
[CrossRef]

J. Volcanol. Geotherm. Res.

R. Wysoczanski and K. Tani, “Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: An example from the Izu-Bonin arc,” J. Volcanol. Geotherm. Res. 156(3-4), 302–314 (2006).
[CrossRef]

Nano Lett.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett. 10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, “Infrared spectroscopic imaging for histopathologic recognition,” Nat. Biotechnol. 23(4), 469–474 (2005).
[CrossRef] [PubMed]

Nat. Commun.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[CrossRef] [PubMed]

Nat. Mater.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[CrossRef] [PubMed]

Nat. Methods

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[CrossRef] [PubMed]

Nat. Photonics

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[CrossRef]

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009).
[CrossRef]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Nature

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

R. R. Reisz, T. D. Huang, E. M. Roberts, S. Peng, C. Sullivan, K. Stein, A. R. H. LeBlanc, D. Shieh, R. Chang, C. Chiang, C. Yang, and S. Zhong, “Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains,” Nature 496(7444), 210–214 (2013).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[CrossRef]

S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Phys. Rev. Lett.

Y.-J. Bao, R.-W. Peng, D.-J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N.-B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Phys. Status Solidi

M. Klanjšek Gunde and M. Maček, “Infrared optical constants and dielectric response functions of silicon nitride and oxynitride films,” Phys. Status Solidi 183, 439–449 (2001).
[CrossRef]

Planta

C. Barron, M. L. Parker, E. N. C. Mills, X. Rouau, and R. H. Wilson, “FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness,” Planta 220(5), 667–677 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[CrossRef] [PubMed]

Proc. SPIE

S. Sabbah, P. Rusch, J.-H. Gerhard, and R. Harig, “Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy,” Proc. SPIE 8743, 874317 (2013).
[CrossRef]

Rev. Mod. Phys.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[CrossRef]

Sol. Energy Mater.

M. Rubin, “Optical properties of soda lime silica glasses,” Sol. Energy Mater. 12(4), 275–288 (1985).
[CrossRef]

Other

J. A. Kong, Electromagnetic Wave Theory (Wiley, New York, 1990).

S. L. Chuang, Physics of Optoelectronic Devices (Wiley-Interscience, New York, 1995).

Due to interference of the waves traveling to the right and to the left, the amplitude of the electric field |E(x)| ∝ |exp(ikmodex) ± exp(-ikmodex)| ∝ |cos(kmodex)| or |sin(kmodex)|. Therefore, |E(x)| is a standing wave with a period of π/kmode in the x direction. When kmode = 2π/Λ, the period of |E(x)| becomes Λ/2.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, New York, 2007).

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley-Interscience, Hoboken, NJ, 2007).

C. D. Craver, ed., The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, Kirkwood, MO, 1982).

H. A. Macleod, “Band-pass filters,” in Thin-Film Optical Filters, 4th Edition (CRC Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle and design of mid-IR narrowband high-contrast-ratio GFRs. (a) Schematic diagram defining the orientation and polarization of incident light and the structural parameters of the GFR. TE, transverse electric. TM, transverse magnetic. (b) Incident mid-IR radiation gets reflected via two channels presented in the structure, Lorentzian narrow-linewidth guided resonance and broadband Fabry−Pérot (F−P) reflection. (c) Computed F−P reflectance spectra vs. thickness for a flat thin-film slab with an effective thickness tslab = d2 + d1/2 and refractive indices nSiN = 2.02 and nSL = 1.47 at normal incidence. Cutoff curves of the several lowest-order guided modes are combined with the reflectance contours for design of GFRs. (d) Calculated dispersion curves of the two fundamental guided modes, TE0 and TM0, in a flat thin-film slab with tslab = 730 nm. Higher-order modes TE1 and TM1 have cutoff wavenumbers of 5984 and 6935 cm−1, respectively, and are beyond the frequency range here. The inset illustrates how to determine Λ for a given νres based on a dispersion curve. (e) Analytically predicted Λ vs. resonance wavenumber (white dashes) near the C−H stretching region. FEM-computed reflectance maps for a physical structure with [θ1, θ2, f, d2, d1] = [55°, 55°, 0.35, 580 nm, 300 nm] (corresponding to tslab = 730 nm) are overlaid for comparison.

Fig. 2
Fig. 2

Spectral response of the GFR as a function of incident angle (θi) and wavenumber for (a) TE polarization and (b) TM polarization. Far-field reflectance is computed using FEM for a GFR structure with [Λ, θ1, θ2, f, d2, d1] = [2 µm, 55°, 55°, 0.35, 580 nm, 300 nm]. Analytically predicted resonance peaks (white dashes) based on Eq. (1) and the calculated dispersion curves for tslab = 730 nm in Fig. 1(d) are overlaid for comparison. Refractive indices nSiN = 2.02 and nSL = 1.47 are assumed in both FEM computation and analytical prediction.

Fig. 3
Fig. 3

Large-area mid-IR GFRs with narrow bandwidth and high CR. (a) Optical image of a set of large-area GFRs built on a 4-inch soda lime glass substrate. Top right inset: SEM image of a fabricated structure. (b) AFM cross-sectional profiles, vertically offset for clarity. The 3-D AFM topography image of the structure 7 (GFR-7) is shown in the top inset. (c) Measured and FEM-computed far-field reflectance spectra of a representative device (GFR-3) when a TM-polarized (top) or TE-polarized (bottom) light is normally incident, along with the zoomed-in spectra in the vicinity of the resonances of all GFRs as shown in the inset. Each experimental spectrum is also fitted with the Fano interference model (Eq. (2)). (d) FEM-computed electric field amplitude (|E/Einc|) distributions in a unit cell of the GFR-3 at the indicated spectral locations in (c).

Fig. 4
Fig. 4

Comparison of measured spectra of the GFRs in the present work and the devices reported previously [64] for (a) TE polarization and (b) TM polarization. (Reproduced with permission from [64]. Copyright 2010 American Chemical Society.)

Fig. 5
Fig. 5

(a) Schematic of GFR-based DF-IR spectroscopic imaging microscopy. Bottom inset: motorized GFR wheel mounting stage. Right inset: narrowband IR radiation passes through a sample under test. NA, numerical aperture. (b) IR spectra at the indicated beam locations in (a).

Fig. 6
Fig. 6

DF-IR spectroscopic imaging of a USAF resolution target made of SU-8 polymer. Optical microscopic image (a) and mosaic DF-IR absorbance images (b) of a USAF resolution target (group 3, element 3, 4, and 5) when the resonance of the GFRs is outside (left, using TE-polarized GFR-6) or within (right, using TE-polarized GFR-1) the IR absorption bands of SU-8 polymer. (c) A series of DF-IR absorbance images of the area defined by the yellow dashed square in (b) using a set of GFRs made and their corresponding spectra (colored: measured IR spectral density of the beam before entering the microscope; grey: measured FT-IR absorbance spectra of SU-8 polymer at the position denoted by the red cross in the top left inset of (c)). Scale bar 100 µm. (d) Measured (averaged over 3 × 3 pixels, with error bars indicating ± 1 standard deviation, N = 9) and calculated DF-IR absorbance spectra of SU-8 polymer at the location denoted by the red cross in the top left inset of (c), along with the measured FT-IR absorbance spectrum at the same place. Fitted resonance wavenumbers in Table 2 were used to determine the spectral positions of DF-IR data set. (e) Measured DF-IR absorbance profiles along the red line in the inset. The DF-IR image in the inset is the same as the one for TE-polarized GFR-1 shown in (c). (f) Measured FT-IR absorbance image of the same area and FT-IR absorbance profile along the red line at 2908 cm−1, which is close to the resonance wavenumber of the TE-polarized GFR-1.

Fig. 7
Fig. 7

Transmittance spectra of the objective lens (LightPath) and condenser lens (Edmund Optics).

Fig. 8
Fig. 8

DF-IR spectral imaging of human breast tissue. (a) Optical images of an unstained human breast tissue specimen. (b) DF-IR absorbance spectrum (top) at the location marked by the green cross in (a) probed by narrowband IR beam reflected by the TM-polarized GFR wheel (IR spectral density Sbeam(ν) shown in the bottom). FT-IR absorbance spectrum at the same location and FT-IR absorbance images of the area defined by the red square in (a) at 2938 cm−1 and 3014 cm−1 (corresponding to νres of TM-polarized GFR-7 and GFR-5, respectively) are also provided in the top for reference. Scale bar 50 µm. (c) DF-IR absorbance imaging, showing higher absorbance of tissue for GFR-7 (purple) than the value for GFR-5 (orange).

Tables (2)

Tables Icon

Table 1 Structural parameters of the fabricated GFRs

Tables Icon

Table 2 Value of resonance wavenumbers (νres), linewidth (Δν), quality factor (Q), ratio of the powers in the Lorentzian resonance to in the direct continuum background (Pr/Pc), the relative phase difference between these two channels (ϕ), and contrast ratio (CR) by a fit with Eq. (2) of the experimental spectra in Fig. 3(c)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

k mode = x ^ | k 0 |sin θ i ± G x
R(ν)= | r(ν) | 2 = | a c (ν)+ b r e iϕ Δν/2 i(ν ν res )+Δν/2 | 2
CR= R peak R vicinity
A DF-IR | ν= ν res = log 10 ( I ref I db I sample I db )
A DF-IR | at peak wavenumber = log 10 ( S beam (ν) T cond (ν) T obj (ν)dν S beam (ν) T cond (ν) T obj (ν) 10 A FT-IR (ν) dν )
[ E 0 r E 0 ]=B[ t E 0 0 ]
B= 1 2 [ (1+ P air|SiN ) e i k z,SiN t slab (1 P air|SiN ) e i k z,SiN t slab (1 P air|SiN ) e i k z,SiN t slab (1+ P air|SiN ) e i k z,SiN t slab ] 1 2 [ (1+ P SiN|SL ) (1 P SiN|SL ) (1 P SiN|SL ) (1+ P SiN|SL ) ] =[ b 11 b 12 b 21 b 22 ]
R F-P = | r | 2 = | b 21 b 11 | 2
( n SiN k 0 ) 2 k mode 2 t slab = tan 1 ( α air ( n SiN k 0 ) 2 k mode 2 )+ tan 1 ( α SL ( n SiN k 0 ) 2 k mode 2 )+mπ
( n SiN k 0 ) 2 k mode 2 t slab = tan 1 ( n SiN 2 n air 2 α air ( n SiN k 0 ) 2 k mode 2 )+ tan 1 ( n SiN 2 n SL 2 α SL ( n SiN k 0 ) 2 k mode 2 )+mπ
α air = k mode 2 ( n air k 0 ) 2
α SL = k mode 2 ( n SL k 0 ) 2

Metrics