Abstract

Based on a hybrid discrete dipole approximation (DDA) and T-matrix method, a powerful dynamic simulation model is used to find plausible equilibrium orientation landscapes of micro- and nano-spheroids of varying size and aspect ratio. Orientation landscapes of spheroids are described in both linearly and circularly polarized Gaussian beams. It’s demonstrated that the equilibrium orientations of the prolate and oblate spheroids have different performances. Effect of beam polarization on orientation landscapes is revealed as well as new orientation of oblate spheroids. The torque efficiencies of spheroids at equilibrium are also studied as functions of tilt angle, from which the orientations of the spheroids can be affirmed. This investigation elucidates a solid background in both the function and properties of micro-and nano-spheroidal particles trapped in optical tweezers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  2. M. Gu, S. Kuriakose, and X. S. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007).
    [CrossRef] [PubMed]
  3. G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14(25), 12497–12502 (2006).
    [CrossRef] [PubMed]
  4. M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012).
    [CrossRef]
  5. O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8, 217–222 (2001).
  6. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond. A 459(2040), 3021–3041 (2003).
    [CrossRef]
  7. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
    [CrossRef]
  8. A. A. R. Neves, A. Fontes, L. Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14(26), 13101–13106 (2006).
    [CrossRef] [PubMed]
  9. D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express 20(28), 29679–29693 (2012).
    [CrossRef] [PubMed]
  10. M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
    [CrossRef]
  11. L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
    [CrossRef]
  12. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50(10), 1581–1590 (2003).
    [CrossRef]
  13. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
    [CrossRef]
  14. S. H. Simpson and S. Hanna, “Optical trapping of dielectric ellipsoids,” Proc. SPIE 7762, 77621B (2010).
    [CrossRef]
  15. M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 097006 (2012).
    [CrossRef] [PubMed]
  16. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24(2), 430–443 (2007).
    [CrossRef] [PubMed]
  17. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
    [CrossRef]
  18. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).
    [CrossRef]
  19. V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1460–1471 (2009).
    [CrossRef]
  20. S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19(17), 16526–16541 (2011).
    [CrossRef] [PubMed]
  21. E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977).
    [CrossRef]
  22. M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Comput. Phys. Commun. 182(2), 400–408 (2011).
    [CrossRef]
  23. Y. Y. Cao, A. B. Stilgoe, L. X. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
    [CrossRef] [PubMed]
  24. O. A. Bauchau and L. Trainelli, “The vectorial parameterization of rotation,” Nonlinear Dyn. 32(1), 71–92 (2003).
    [CrossRef]
  25. S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84(5), 053808 (2011).
    [CrossRef]
  26. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
    [CrossRef] [PubMed]
  27. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
    [CrossRef]

2012 (4)

M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012).
[CrossRef]

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 097006 (2012).
[CrossRef] [PubMed]

Y. Y. Cao, A. B. Stilgoe, L. X. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[CrossRef] [PubMed]

D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express 20(28), 29679–29693 (2012).
[CrossRef] [PubMed]

2011 (4)

M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Comput. Phys. Commun. 182(2), 400–408 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19(17), 16526–16541 (2011).
[CrossRef] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).
[CrossRef]

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84(5), 053808 (2011).
[CrossRef]

2010 (2)

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

S. H. Simpson and S. Hanna, “Optical trapping of dielectric ellipsoids,” Proc. SPIE 7762, 77621B (2010).
[CrossRef]

2009 (4)

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1460–1471 (2009).
[CrossRef]

2007 (3)

2006 (2)

2003 (4)

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond. A 459(2040), 3021–3041 (2003).
[CrossRef]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50(10), 1581–1590 (2003).
[CrossRef]

O. A. Bauchau and L. Trainelli, “The vectorial parameterization of rotation,” Nonlinear Dyn. 32(1), 71–92 (2003).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

2001 (2)

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[CrossRef]

O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8, 217–222 (2001).

1977 (1)

E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Akhlaghi, E. A.

M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Comput. Phys. Commun. 182(2), 400–408 (2011).
[CrossRef]

Albaladejo, S.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Asavei, T.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Bailey, N. J.

M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012).
[CrossRef]

Barbieri, M.

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[CrossRef]

Barbosa, L. C.

Bauchau, O. A.

O. A. Bauchau and L. Trainelli, “The vectorial parameterization of rotation,” Nonlinear Dyn. 32(1), 71–92 (2003).
[CrossRef]

Bayoudh, S.

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50(10), 1581–1590 (2003).
[CrossRef]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[CrossRef]

Botchway, S. W.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Bowman, R.

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

Busch, K.

Cao, Y. Y.

Carberry, D. M.

D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express 20(28), 29679–29693 (2012).
[CrossRef] [PubMed]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Cesar, C. L.

Charsooghi, M. A.

M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Comput. Phys. Commun. 182(2), 400–408 (2011).
[CrossRef]

Chen, L. X.

Chichkov, B.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Chillce, E.

Cooper, J. M.

M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012).
[CrossRef]

de Thomaz, A. A.

Evans, R. M. L.

M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012).
[CrossRef]

Fontes, A.

Freeman, E.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Gan, X. S.

Gibson, G.

Gibson, G. M.

D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express 20(28), 29679–29693 (2012).
[CrossRef] [PubMed]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Gu, M.

Halsall, R. N. J.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Hanna, S.

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1460–1471 (2009).
[CrossRef]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50(10), 1581–1590 (2003).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[CrossRef]

Ikin, L.

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Jenkins, D. W. K.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

John, S.

Khalesifard, H. R.

M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Comput. Phys. Commun. 182(2), 400–408 (2011).
[CrossRef]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

Kuriakose, S.

Laroche, M.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Leach, J.

Loader, I.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1460–1471 (2009).
[CrossRef]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

Maia Neto, P. A.

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond. A 459(2040), 3021–3041 (2003).
[CrossRef]

Marqués, M. I.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Mazolli, A.

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond. A 459(2040), 3021–3041 (2003).
[CrossRef]

Miles, M.

Miles, M. J.

D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express 20(28), 29679–29693 (2012).
[CrossRef] [PubMed]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Neves, A. A. R.

Nieminen, T. A.

Y. Y. Cao, A. B. Stilgoe, L. X. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[CrossRef] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1460–1471 (2009).
[CrossRef]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50(10), 1581–1590 (2003).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[CrossRef]

Nussenzveig, H. M.

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond. A 459(2040), 3021–3041 (2003).
[CrossRef]

Ovsianikov, A.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Padgett, M.

Padgett, M. J.

D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express 20(28), 29679–29693 (2012).
[CrossRef] [PubMed]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

Parker, A. W.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Petrov, D.

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 097006 (2012).
[CrossRef] [PubMed]

Phillips, D. B.

Pollard, M. R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Pozzo, L. Y.

Purcell, E. M.

E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977).
[CrossRef]

Raj, S.

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 097006 (2012).
[CrossRef] [PubMed]

Robert, D.

Rodriguez, E.

Rubinsztein-Dunlop, H.

Y. Y. Cao, A. B. Stilgoe, L. X. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[CrossRef] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1460–1471 (2009).
[CrossRef]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50(10), 1581–1590 (2003).
[CrossRef]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[CrossRef]

Sáenz, J. J.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

Simpson, S. H.

Stevens, R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Stilgoe, A. B.

Y. Y. Cao, A. B. Stilgoe, L. X. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[CrossRef] [PubMed]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

Tassieri, M.

M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012).
[CrossRef]

Tavaddod, S.

M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Comput. Phys. Commun. 182(2), 400–408 (2011).
[CrossRef]

Toader, O.

Towrie, M.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Trainelli, L.

O. A. Bauchau and L. Trainelli, “The vectorial parameterization of rotation,” Nonlinear Dyn. 32(1), 71–92 (2003).
[CrossRef]

Turchetta, R.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Ward, A. D.

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

Warren, R. L.

M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012).
[CrossRef]

Whyte, G.

Wojdyla, M.

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 097006 (2012).
[CrossRef] [PubMed]

Am. J. Phys. (1)

E. M. Purcell, “Life at low Reynolds-number,” Am. J. Phys. 45(1), 3–11 (1977).
[CrossRef]

Comput. Phys. Commun. (2)

M. A. Charsooghi, E. A. Akhlaghi, S. Tavaddod, and H. R. Khalesifard, “A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle,” Comput. Phys. Commun. 182(2), 400–408 (2011).
[CrossRef]

T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142(1-3), 468–471 (2001).
[CrossRef]

J. Biomed. Opt. (1)

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 097006 (2012).
[CrossRef] [PubMed]

J. Mod. Opt. (2)

S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of biological cells using plane-polarized Gaussian beam optical tweezers,” J. Mod. Opt. 50(10), 1581–1590 (2003).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1460–1471 (2009).
[CrossRef]

New J. Phys. (4)

M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie, “Optically trapped probes with nanometer-scale tips for femto-newton force measurement,” New J. Phys. 12(11), 113056 (2010).
[CrossRef]

L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11(2), 023012 (2009).
[CrossRef]

M. Tassieri, R. M. L. Evans, R. L. Warren, N. J. Bailey, and J. M. Cooper, “Microrheology with optical tweezers: data analysis,” New J. Phys. 14(11), 115032 (2012).
[CrossRef]

T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” New J. Phys. 11(9), 093021 (2009).
[CrossRef]

Nonlinear Dyn. (1)

O. A. Bauchau and L. Trainelli, “The vectorial parameterization of rotation,” Nonlinear Dyn. 32(1), 71–92 (2003).
[CrossRef]

Opt. Express (7)

O. Toader, S. John, and K. Busch, “Optical trapping, field enhancement and laser cooling in photonic crystals,” Opt. Express 8, 217–222 (2001).

G. Whyte, G. Gibson, J. Leach, M. Padgett, D. Robert, and M. Miles, “An optical trapped microhand for manipulating micron-sized objects,” Opt. Express 14(25), 12497–12502 (2006).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, L. Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Opt. Express 14(26), 13101–13106 (2006).
[CrossRef] [PubMed]

M. Gu, S. Kuriakose, and X. S. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007).
[CrossRef] [PubMed]

S. H. Simpson and S. Hanna, “Application of the discrete dipole approximation to optical trapping calculations of inhomogeneous and anisotropic particles,” Opt. Express 19(17), 16526–16541 (2011).
[CrossRef] [PubMed]

Y. Y. Cao, A. B. Stilgoe, L. X. Chen, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Equilibrium orientations and positions of non-spherical particles in optical traps,” Opt. Express 20(12), 12987–12996 (2012).
[CrossRef] [PubMed]

D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, “An optically actuated surface scanning probe,” Opt. Express 20(28), 29679–29693 (2012).
[CrossRef] [PubMed]

Phys. Rev. A (2)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[CrossRef]

S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84(5), 053808 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Proc. R. Soc. Lond. A (1)

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. Lond. A 459(2040), 3021–3041 (2003).
[CrossRef]

Proc. SPIE (1)

S. H. Simpson and S. Hanna, “Optical trapping of dielectric ellipsoids,” Proc. SPIE 7762, 77621B (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical trapping and rotation of prolate and oblate common glass spheroids with refractive index of n = 1.57 in circularly polarized Gaussian Beams propagating along + z axis. The Gaussian beam profile is shown in (a). Both the (b) prolate spheroid with 2a = 1200 nm and 2b = 400 nm and (c) oblate spheroid with 2a = 200 nm and 2b = 400 nm were trapped stably with their primary axes along beam axes. The solid curve and arrow show the trajectory of one endpoint of each spheroid.

Fig. 2
Fig. 2

Orientations landscapes of prolate and oblate spheroids (n = 1.57) in (a) linearly and (b) circularly polarized beams. Three regimes in the orientation landscapes are the vertical region, horizontal region, and the intermediate region between the vertical and horizontal regions. The “circle” means the prolate spheroid with the longest primary axis or oblate spheroid with shortest primary axis trapped horizontally for each corresponding secondary axis. The “star” indicates the shortest prolate spheroid or the longest oblate spheroid for each corresponding secondary axis, which can be trapped vertically. The fitting curves are used to distinguish different regions.

Fig. 3
Fig. 3

Torque efficiencies, Qτx and Qτy, for the oblate spheroids with 2b = 450 nm and 2a = 120, 240, 360 nm at equilibrium positions in (a) linearly and (b) circularly polarized beams as functions of tilt angle. The primary-axis orientations of and oblate spheroids were changed from + z to –x axes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ν= γ t 1 F,
ω= γ r 1 Γ,
r( t+dt )=r( t )+νdt,
R t+dt =ΔR R t ,

Metrics