Abstract

We show a setup for characterising the efficiency of a single-photon-detector absolutely and with a precision better than 1%. Since the setup does not rely on calibrated devices and can be implemented with standard-optic components, it can be realised in any laboratory. Our approach is based on an Erbium-Doped-Fiber-Amplifier (EDFA) radiometer as a primary measurement standard for optical power, and on an ultra-stable source of spontaneous emission. As a proof of principle, we characterise the efficiency of an InGaAs/InP single-photon detector. We verified the correctness of the characterisation with independent measurements. In particular, the measurement of the optical power made with the EDFA radiometer has been compared to that of the Federal Institute of Metrology using a transfer power meter. Our approach is suitable for frequent characterisations of high-efficient single-photon detectors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
    [CrossRef]
  2. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [CrossRef]
  3. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208 (2013).
    [CrossRef] [PubMed]
  4. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
    [CrossRef] [PubMed]
  5. P. M. Pearle and M. Philip, “Hidden-variable example based upon data rejection,” Phys. Rev. D 2(8), 1418–1425 (1970).
    [CrossRef]
  6. B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
    [CrossRef] [PubMed]
  7. J. Y. Cheung, C. J. Chunnilall, G. Porrovecchio, M. Smid, and E. Theocharous, “Low optical power reference detector implemented in the validation of two independent techniques for calibrating photon-counting detectors,” Opt. Express 19(21), 20347 (2011).
    [CrossRef] [PubMed]
  8. A. C. Parr, “The candela and photometric and radiometric measurements,” J. Res. NIST 106(1), 151–186 (2000).
    [CrossRef]
  9. S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007).
    [CrossRef] [PubMed]
  10. S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 569, 1045–1052 (2009).
    [CrossRef]
  11. M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: The march from feasibility to metrology,” J. Mod. Opt. 51(9), 1549–1557 (2004).
    [CrossRef]
  12. B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012).
    [CrossRef]
  13. T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
    [CrossRef]
  14. F. Monteiro, T. Guerreiro, B. Sanguinetti, and H. Zbinden, “Intrinsically stable light source at telecom wavelengths,” Appl. Phys. Lett. 103(5), 051109 (2013).
    [CrossRef]
  15. J. Envall, P. Krh, and E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41(4), 353 (2004).
    [CrossRef]
  16. http://refractiveindex.info .
  17. see e.g. EXFO Tunable laser source: IQS/FLS 2600.
  18. B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010).
    [CrossRef] [PubMed]
  19. B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014).
    [CrossRef]
  20. I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST special publications250–256 (2000).
  21. D. W. Scott, “On optimal and data-based histograms,” Biometrika 66(3), 605–610 (1979).
    [CrossRef]
  22. J. W. Kindt, Geiger Mode Avalanche Photodiode Arrays: For Spatially Resolved Single Photon Counting (Delft University Press, 1999).
  23. J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
    [CrossRef]
  24. S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12(12), 685–687 (1991).
    [CrossRef]

2014 (1)

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014).
[CrossRef]

2013 (5)

F. Monteiro, T. Guerreiro, B. Sanguinetti, and H. Zbinden, “Intrinsically stable light source at telecom wavelengths,” Appl. Phys. Lett. 103(5), 051109 (2013).
[CrossRef]

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[CrossRef]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208 (2013).
[CrossRef] [PubMed]

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

2012 (2)

B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012).
[CrossRef]

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

2011 (1)

2010 (2)

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[CrossRef] [PubMed]

B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010).
[CrossRef] [PubMed]

2009 (2)

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 569, 1045–1052 (2009).
[CrossRef]

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

2007 (1)

2004 (2)

J. Envall, P. Krh, and E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41(4), 353 (2004).
[CrossRef]

M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: The march from feasibility to metrology,” J. Mod. Opt. 51(9), 1549–1557 (2004).
[CrossRef]

2000 (1)

A. C. Parr, “The candela and photometric and radiometric measurements,” J. Res. NIST 106(1), 151–186 (2000).
[CrossRef]

1991 (1)

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12(12), 685–687 (1991).
[CrossRef]

1979 (1)

D. W. Scott, “On optimal and data-based histograms,” Biometrika 66(3), 605–610 (1979).
[CrossRef]

1970 (1)

P. M. Pearle and M. Philip, “Hidden-variable example based upon data rejection,” Phys. Rev. D 2(8), 1418–1425 (1970).
[CrossRef]

Altepeter, J. B.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Barreiro, C.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

Bienfang, J. C.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[CrossRef]

Brunner, N.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Calkins, B.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Cheung, J. Y.

Christensen, B. G.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Chunnilall, C. J.

Cova, S.

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12(12), 685–687 (1991).
[CrossRef]

Cromer, C. L.

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST special publications250–256 (2000).

Envall, J.

J. Envall, P. Krh, and E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41(4), 353 (2004).
[CrossRef]

Gautier, J. D.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Gerrits, T.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Gisin, N.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014).
[CrossRef]

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012).
[CrossRef]

B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010).
[CrossRef] [PubMed]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[CrossRef] [PubMed]

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Guerreiro, T.

F. Monteiro, T. Guerreiro, B. Sanguinetti, and H. Zbinden, “Intrinsically stable light source at telecom wavelengths,” Appl. Phys. Lett. 103(5), 051109 (2013).
[CrossRef]

B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012).
[CrossRef]

Guinnard, O.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Houlmann, R.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

Ikonen, E.

J. Envall, P. Krh, and E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41(4), 353 (2004).
[CrossRef]

Itzler, M. A.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

Jiang, X.

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

Kindt, J. W.

J. W. Kindt, Geiger Mode Avalanche Photodiode Arrays: For Spatially Resolved Single Photon Counting (Delft University Press, 1999).

Korzh, B.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014).
[CrossRef]

Krh, P.

J. Envall, P. Krh, and E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41(4), 353 (2004).
[CrossRef]

Kwiat, P. G.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Lacaita, A.

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12(12), 685–687 (1991).
[CrossRef]

Li, X.

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST special publications250–256 (2000).

Lim, C. C. W.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Lita, A. E.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Lunghi, T.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014).
[CrossRef]

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

McCusker, K. T.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Migdall, A. L.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[CrossRef]

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 569, 1045–1052 (2009).
[CrossRef]

S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007).
[CrossRef] [PubMed]

M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: The march from feasibility to metrology,” J. Mod. Opt. 51(9), 1549–1557 (2004).
[CrossRef]

Miki, S.

Miller, A.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Monteiro, F.

F. Monteiro, T. Guerreiro, B. Sanguinetti, and H. Zbinden, “Intrinsically stable light source at telecom wavelengths,” Appl. Phys. Lett. 103(5), 051109 (2013).
[CrossRef]

B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012).
[CrossRef]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Nam, Y. S. W.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Parr, A. C.

A. C. Parr, “The candela and photometric and radiometric measurements,” J. Res. NIST 106(1), 151–186 (2000).
[CrossRef]

Pearle, P. M.

P. M. Pearle and M. Philip, “Hidden-variable example based upon data rejection,” Phys. Rev. D 2(8), 1418–1425 (1970).
[CrossRef]

Philip, M.

P. M. Pearle and M. Philip, “Hidden-variable example based upon data rejection,” Phys. Rev. D 2(8), 1418–1425 (1970).
[CrossRef]

Pironio, S.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[CrossRef] [PubMed]

Polyakov, S. V.

Pomarico, E.

B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010).
[CrossRef] [PubMed]

Porrovecchio, G.

Restelli, A.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[CrossRef]

Ripamonti, G.

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12(12), 685–687 (1991).
[CrossRef]

Sangouard, N.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[CrossRef] [PubMed]

Sanguinetti, B.

F. Monteiro, T. Guerreiro, B. Sanguinetti, and H. Zbinden, “Intrinsically stable light source at telecom wavelengths,” Appl. Phys. Lett. 103(5), 051109 (2013).
[CrossRef]

B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012).
[CrossRef]

B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010).
[CrossRef] [PubMed]

Scott, D. W.

D. W. Scott, “On optimal and data-based histograms,” Biometrika 66(3), 605–610 (1979).
[CrossRef]

Scott, T. R.

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST special publications250–256 (2000).

Sekatski, P.

B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010).
[CrossRef] [PubMed]

Shalm, L. K.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Smid, M.

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Terai, H.

Theocharous, E.

Thew, R.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST special publications250–256 (2000).

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Walenta, N.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014).
[CrossRef]

Wang, Z.

Ware, M.

M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: The march from feasibility to metrology,” J. Mod. Opt. 51(9), 1549–1557 (2004).
[CrossRef]

Yamashita, T.

Yang, S.

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST special publications250–256 (2000).

Zbinden, H.

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014).
[CrossRef]

F. Monteiro, T. Guerreiro, B. Sanguinetti, and H. Zbinden, “Intrinsically stable light source at telecom wavelengths,” Appl. Phys. Lett. 103(5), 051109 (2013).
[CrossRef]

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012).
[CrossRef]

B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010).
[CrossRef] [PubMed]

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Zhang, J.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Zhang, Y.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102(14), 141104 (2013).
[CrossRef]

F. Monteiro, T. Guerreiro, B. Sanguinetti, and H. Zbinden, “Intrinsically stable light source at telecom wavelengths,” Appl. Phys. Lett. 103(5), 051109 (2013).
[CrossRef]

B. Korzh, N. Walenta, T. Lunghi, N. Gisin, and H. Zbinden, “Free-running InGaAs single photon detector with 1 cps dark count rate at 10% efficiency,” Appl. Phys. Lett. 104(8), 081108 (2014).
[CrossRef]

Biometrika (1)

D. W. Scott, “On optimal and data-based histograms,” Biometrika 66(3), 605–610 (1979).
[CrossRef]

IEEE Electron. Dev. Lett. (1)

S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron. Dev. Lett. 12(12), 685–687 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

J. Mod. Opt. (3)

S. V. Polyakov and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 569, 1045–1052 (2009).
[CrossRef]

M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: The march from feasibility to metrology,” J. Mod. Opt. 51(9), 1549–1557 (2004).
[CrossRef]

T. Lunghi, C. Barreiro, O. Guinnard, R. Houlmann, X. Jiang, M. A. Itzler, and H. Zbinden, “Free-running single-photon detection based on a negative feedback InGaAs APD,” J. Mod. Opt. 59(17), 1481–1488 (2012).
[CrossRef]

J. Res. NIST (1)

A. C. Parr, “The candela and photometric and radiometric measurements,” J. Res. NIST 106(1), 151–186 (2000).
[CrossRef]

Metrologia (1)

J. Envall, P. Krh, and E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41(4), 353 (2004).
[CrossRef]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (1)

B. Sanguinetti, T. Guerreiro, F. Monteiro, N. Gisin, and H. Zbinden, “Measuring absolute spectral radiance using an Erbium-Doped Fiber Amplifier,” Phys. Rev. A 86(6), 062110 (2012).
[CrossRef]

Phys. Rev. D (1)

P. M. Pearle and M. Philip, “Hidden-variable example based upon data rejection,” Phys. Rev. D 2(8), 1418–1425 (1970).
[CrossRef]

Phys. Rev. Lett. (3)

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, Y. S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[CrossRef] [PubMed]

B. Sanguinetti, E. Pomarico, P. Sekatski, H. Zbinden, and N. Gisin, “Quantum cloning for absolute radiometry,” Phys. Rev. Lett. 105, 080503 (2010).
[CrossRef] [PubMed]

Other (4)

J. W. Kindt, Geiger Mode Avalanche Photodiode Arrays: For Spatially Resolved Single Photon Counting (Delft University Press, 1999).

I. Vayshenker, S. Yang, X. Li, T. R. Scott, and C. L. Cromer, “Optical fiber power meter nonlinearity calibrations at NIST,” NIST special publications250–256 (2000).

http://refractiveindex.info .

see e.g. EXFO Tunable laser source: IQS/FLS 2600.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conventional method: sketch.

Fig. 2
Fig. 2

Picture of the stand-alone device: the output fiber (on the right) is plugged into the power meter (on the left).

Fig. 3
Fig. 3

(a) Schematic of the radiometer. (b) Picture of the setup. The green line (orange arrow) enhances the Er3+ fiber (the pump laser fibre).

Fig. 4
Fig. 4

(a) Detection rate probability distribution for the DUT with collection time set to 10 s. The incoming power is not adjusted during the entire measurement (10 hours). The measured detection rate is limited only by Poissonian statistics and no significant drift of the average value is measured. This demonstrates the high stability of the setup. (b) Relative Allan deviation for the same measurement. The light blue shaded area represents the uncertainty of the measured value.

Tables (8)

Tables Icon

Table 1 Transmission factors. k indicates the coverage factor.

Tables Icon

Table 2 Uncertainty budget of the attenuation

Tables Icon

Table 3 Stability of the optical power

Tables Icon

Table 4 Uncertainty budget of the testbench.

Tables Icon

Table 5 Detection efficiency estimated before and after applying the afterpulsing correction. For the latter, we compared the two methods used to measure the afterpulsing probability.

Tables Icon

Table 6 Uncertainty budget of the efficiency characterisation. The uncertainty on the detection efficiency is obtained by adding the uncertainties of each component in quadrature.

Tables Icon

Table 7 Uncertainty budget of the radiometer.

Tables Icon

Table 8 Total afterpulse probabilities. The acquisition time for the first (second) method is 10 minutes (1 hours).

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

μ out = G μ in + G 1
P sp * = ( G 1 ) 2 τ c h ν k
P st * = ( G μ in + G 1 ) 2 τ c h ν k
μ in ( λ ) = ( 1 1 G ( λ ) ) ( P st * ( λ ) P sp * ( λ ) 1 )
G ( λ ) = P st * ( λ ) P sp * ( λ ) P in * ( λ )
G ¯ = P st * P sp * T 3 P in * T 1 T 2
σ G = σ P st * 2 + σ P sp * 2 + σ P in * 2 + σ T 1 2 + σ T 2 2 + σ T 3 2
P radio = 1 T 1 T 2 λ i ( μ in ( λ i ) 2 h c 2 Δ λ λ i 3 )
N = P PM R D C Att h c / λ t
A i = P 30 dBm , i k NL 30 dBm , i P 60 dBm , i k NL 60 dBm , i
σ A i = σ P 30 dBm 2 + σ P 60 dBm 2 + σ NL 30 dBm 2 + σ NL 60 dBm 2
σ Att = σ A 1 2 + σ A 2 2 ~ 2 σ A i
η = r det r dc N
r det ( 1 + p ap ) = r det * ( 1 r det * τ )
r dc ( 1 + p ap ) = r dc * ( 1 r dc * τ )
η = 1 N ( 1 + p ap ) ( r det * 1 r det * τ r dc * 1 r dc * τ )
p ap = 0 75 μ s ( P c ( t | 0 ) n ) d t
μ in ( λ ) = ( 1 1 G ¯ ) ( P st * ( λ ) P sp * ( λ ) 1 )
σ μ in ( λ ) 2 = σ A 2 + σ B 2 = A B
σ A = σ G ¯ G ¯ ( 1 1 / G ¯ )
σ B = Δ ( P st * ( λ ) / P sp * ( λ ) ) P st * ( λ ) / P sp * ( λ ) 1
σ P radio 2 = σ T 1 2 + σ T 2 2 + ( σ μ in ( λ ) 2 + σ Δ λ 2 + σ Δ 1 λ 3 2 ) d λ
k = P radio P in *
σ k 2 = σ P radio 2 + σ P in * 2
P c ( i Δ T | 0 ) Δ T = h [ i Δ T ] N Tot

Metrics