Abstract

We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
    [CrossRef]
  2. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
    [CrossRef]
  3. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6, 57–119 (2014).
    [CrossRef]
  4. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
    [CrossRef] [PubMed]
  5. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
    [CrossRef]
  6. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [CrossRef] [PubMed]
  7. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
    [CrossRef]
  8. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [CrossRef] [PubMed]
  9. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
    [CrossRef] [PubMed]
  10. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
    [CrossRef] [PubMed]
  11. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
    [CrossRef] [PubMed]
  12. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photon. 5, 154–157 (2011).
    [CrossRef]
  13. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012).
    [CrossRef]
  14. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
    [CrossRef]
  15. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
    [CrossRef] [PubMed]
  16. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nature Photon. 5, 372–377 (2011).
    [CrossRef]
  17. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
    [CrossRef]
  18. J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012).
    [CrossRef]
  19. Y. F. Guan, O. Katz, E. Small, J. Y. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4663–4665 (2012).
    [CrossRef] [PubMed]
  20. J. H. Park, C. Park, H. Yu, Y. Cho, and Y. H. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012).
    [CrossRef] [PubMed]
  21. E. Small, O. Katz, Y. F. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
    [CrossRef]
  22. S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. H. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22, 8320–8332 (2014).
    [CrossRef] [PubMed]
  23. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 14–25 (2003).
    [CrossRef]
  24. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
    [CrossRef] [PubMed]
  25. B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–168 (1969).
    [CrossRef]
  26. T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
    [CrossRef]
  27. E. Ulusoy, L. Onural, and H. M. Ozaktas, “Synthesis of three-dimensional light fields with spatial light modulators,” J. Opt. Soc. Am. A 28, 1211–1223 (2011).
    [CrossRef]
  28. W.-H. Lee, “Computer-generated holograms: Techniques and applications,” (Elsevier, 1978), pp. 119–232.
  29. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26, 4351–4360 (1987).
    [CrossRef] [PubMed]
  30. G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
    [CrossRef]
  31. W.-H. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677–1682 (1974).
    [CrossRef] [PubMed]
  32. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [CrossRef] [PubMed]
  33. M. Mirhosseini, O. S. Magana-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, “Rapid generation of light beams carrying orbital angular momentum,” Opt. Express 21, 30196–30203 (2013).
    [CrossRef]
  34. V. Lerner, D. Shwa, Y. Drori, and N. Katz, “Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device,” Opt. Lett. 37, 4826–4828 (2012).
    [CrossRef] [PubMed]
  35. E. Ulusoy, L. Onural, and H. Ozaktas, “Full-complex amplitude modulation with binary spatial light modulators,” J. Opt. Soc. Am. A 28, 2310–2321 (2011).
    [CrossRef]
  36. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
    [CrossRef] [PubMed]
  37. S. A. Goorden, J. Bertolotti, and A. P. Mosk, Control software for superpixel-based phase and amplitude modulation using a DMD, open source: https://sourceforge.net/projects/fullfieldmodulation (2014).
  38. A. Yao and M. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [CrossRef]
  39. T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
    [CrossRef] [PubMed]
  40. L. Allen, M. Bijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  41. S. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef] [PubMed]
  42. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]

2014 (2)

2013 (2)

M. Mirhosseini, O. S. Magana-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, “Rapid generation of light beams carrying orbital angular momentum,” Opt. Express 21, 30196–30203 (2013).
[CrossRef]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[CrossRef]

2012 (12)

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[CrossRef]

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012).
[CrossRef]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[CrossRef]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[CrossRef] [PubMed]

J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012).
[CrossRef]

J. H. Park, C. Park, H. Yu, Y. Cho, and Y. H. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37, 3261–3263 (2012).
[CrossRef] [PubMed]

E. Small, O. Katz, Y. F. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett. 37, 3429–3431 (2012).
[CrossRef]

A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, “Quantitative phase imaging using a partitioned detection aperture,” Opt. Lett. 37, 4062–4064 (2012).
[CrossRef] [PubMed]

Y. F. Guan, O. Katz, E. Small, J. Y. Zhou, and Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4663–4665 (2012).
[CrossRef] [PubMed]

V. Lerner, D. Shwa, Y. Drori, and N. Katz, “Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device,” Opt. Lett. 37, 4826–4828 (2012).
[CrossRef] [PubMed]

G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
[CrossRef]

2011 (10)

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

A. Yao and M. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[CrossRef]

E. Ulusoy, L. Onural, and H. M. Ozaktas, “Synthesis of three-dimensional light fields with spatial light modulators,” J. Opt. Soc. Am. A 28, 1211–1223 (2011).
[CrossRef]

E. Ulusoy, L. Onural, and H. Ozaktas, “Full-complex amplitude modulation with binary spatial light modulators,” J. Opt. Soc. Am. A 28, 2310–2321 (2011).
[CrossRef]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nature Photon. 5, 372–377 (2011).
[CrossRef]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photon. 5, 154–157 (2011).
[CrossRef]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

2010 (1)

2008 (2)

2007 (2)

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 14–25 (2003).
[CrossRef]

2001 (1)

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

1994 (1)

1992 (1)

L. Allen, M. Bijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

1987 (1)

1982 (1)

1974 (1)

1969 (1)

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–168 (1969).
[CrossRef]

Akbulut, D.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

Allen, L.

L. Allen, M. Bijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[CrossRef]

Aswendt, P.

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Aulbach, J.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

Austin, D. R.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

Banerjee, P. P.

Barnett, S.

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

Bertolotti, J.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef] [PubMed]

Bhaduri, B.

Bijersbergen, M.

L. Allen, M. Bijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Bondareff, P.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

Boyd, R. W.

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nature Photon. 5, 372–377 (2011).
[CrossRef]

Brown, B. R.

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–168 (1969).
[CrossRef]

Caravaca-Aguirre, A. M.

Chatel, B.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

Chen, C.

Cho, Y.

Cho, Y. H.

Chu, K. K.

Conkey, D. B.

Courtial, J.

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[CrossRef]

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[CrossRef]

DiMarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012).
[CrossRef]

Drori, Y.

Dudley, D.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 14–25 (2003).
[CrossRef]

Duncan, W.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 14–25 (2003).
[CrossRef]

Edwards, C.

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[CrossRef]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[CrossRef]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[CrossRef]

Fleischer, J. W.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[CrossRef]

Ford, T. N.

Franke-Arnold, S.

Gibson, G.

Gigan, S.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

Gjonaj, B.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

Goddard, L. L.

Goorden, S. A.

Grange, R.

Grothe, A.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Guan, Y. F.

Hell, S.

Höfling, R.

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Hsieh, C. L.

Huisman, S. R.

Huisman, T. J.

Ina, H.

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

Johnson, P. M.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

Judkewitz, B.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012).
[CrossRef]

Katz, N.

Katz, O.

Kobayashi, S.

Kreis, T.

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Kubanek, A.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
[CrossRef] [PubMed]

Lee, W.-H.

W.-H. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677–1682 (1974).
[CrossRef] [PubMed]

W.-H. Lee, “Computer-generated holograms: Techniques and applications,” (Elsevier, 1978), pp. 119–232.

Lerner, V.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[CrossRef]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photon. 5, 154–157 (2011).
[CrossRef]

Lohmann, A. W.

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–168 (1969).
[CrossRef]

Magana-Loaiza, O. S.

Malik, M.

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

McCabe, D. J.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

Mertz, J.

Mirhosseini, M.

Mosk, A. P.

S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. H. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22, 8320–8332 (2014).
[CrossRef] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[CrossRef]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[CrossRef] [PubMed]

Murr, K.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Nehmetallah, G.

Nguyen, T. H.

Onural, L.

Ozaktas, H.

Ozaktas, H. M.

Padgett, M.

Park, C.

Park, J. H.

Park, Y.

Park, Y. H.

Parthasarathy, A. B.

Pas’ko, V.

Pham, H.

Piestun, R.

Pinkse, P.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Pinkse, P. W. H.

Popescu, G.

Psaltis, D.

Pu, Y.

Puppe, T.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Rempe, G.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

Rodenburg, B.

Schuster, I.

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

Shwa, D.

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[CrossRef]

Silberberg, Y.

Situ, G.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[CrossRef]

Slaughter, J.

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 14–25 (2003).
[CrossRef]

Small, E.

Spreeuw, R.

L. Allen, M. Bijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Tajalli, A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

Takeda, M.

Tricoles, G.

Ulusoy, E.

van Putten, E. G.

Vasnetsov, M.

Vellekoop, I. M.

Vos, W. L.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

Waller, L.

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[CrossRef]

Walmsley, I. A.

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

Wang, L. V.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photon. 5, 154–157 (2011).
[CrossRef]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012).
[CrossRef]

Wichmann, J.

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[CrossRef]

Woerdman, J.

L. Allen, M. Bijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photon. 5, 154–157 (2011).
[CrossRef]

Yang, C. H.

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012).
[CrossRef]

Yao, A.

Yu, H.

Zhou, J. Y.

Zhou, R.

Adv. Opt. Photon. (3)

Appl. Opt. (3)

IBM J. Res. Develop. (1)

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Develop. 13, 160–168 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Laser Photon. Rev. (2)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[CrossRef]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[CrossRef]

Nature Commun. (2)

Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nature Commun. 3, 928 (2012).
[CrossRef]

D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nature Commun. 2, 447 (2011).
[CrossRef]

Nature Photon. (5)

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nature Photon. 6, 657–661 (2012).
[CrossRef]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nature Photon. 5, 154–157 (2011).
[CrossRef]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nature Photon. 5, 372–377 (2011).
[CrossRef]

L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nature Photon. 6, 474–479 (2012).
[CrossRef]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nature Photon. 6, 283 (2012).
[CrossRef]

Opt. Eng. (1)

T. Kreis, P. Aswendt, and R. Höfling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Opt. Express (8)

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[CrossRef] [PubMed]

J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20, 17010–17016 (2012).
[CrossRef]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[CrossRef] [PubMed]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19, 4017–4029 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express 16, 67–80 (2008).
[CrossRef] [PubMed]

S. R. Huisman, T. J. Huisman, S. A. Goorden, A. P. Mosk, and P. W. H. Pinkse, “Programming balanced optical beam splitters in white paint,” Opt. Express 22, 8320–8332 (2014).
[CrossRef] [PubMed]

M. Mirhosseini, O. S. Magana-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, “Rapid generation of light beams carrying orbital angular momentum,” Opt. Express 21, 30196–30203 (2013).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (1)

L. Allen, M. Bijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

T. Puppe, I. Schuster, A. Grothe, A. Kubanek, K. Murr, P. Pinkse, and G. Rempe, “Trapping and observing single atoms in a blue-detuned intracavity dipole trap,” Phys. Rev. Lett. 99, 013002 (2007).
[CrossRef] [PubMed]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 14–25 (2003).
[CrossRef]

Other (2)

W.-H. Lee, “Computer-generated holograms: Techniques and applications,” (Elsevier, 1978), pp. 119–232.

S. A. Goorden, J. Bertolotti, and A. P. Mosk, Control software for superpixel-based phase and amplitude modulation using a DMD, open source: https://sourceforge.net/projects/fullfieldmodulation (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) In the DMD plane the light field E(x) ∈ {0, 1}, corresponding to the off and on states of the micromirrors. The DMD is imaged onto the target plane in which we maximize the level of control over the light field. The DMD pixel images in the target plane have different phase prefactors, because the lenses are placed off-axis with respect to each other. A low pass filter blurs the images of pixels and averages over groups of neighboring pixels. (b,c,d) The aperture is positioned such that the phase responses of the 16 DMD pixels within a 4 × 4 superpixel are uniformly distributed between 0 and 2π. Example: if we turn on the three pixels indicated by green squares in (c), then the response Esuperpixel in the target plane is the sum of the three pixel responses in (d).

Fig. 2
Fig. 2

(a) Complex target fields that can be constructed using a single superpixel of size 3×3. 343 different fields can be constructed. (b) Complex target fields that can be constructed using a single superpixel of size 4 × 4. 6561 different fields can be constructed. Fields are normalized to the incident field. The symbol size is larger for n = 3 to increase visibility.

Fig. 3
Fig. 3

(a,b) Intensity and phase of the target LG10 mode. (c) DMD pattern for the LG10 mode when using the superpixel method. Inset: zoom-in on 20 × 20 DMD pixels. (d,e) Calculated intensity and phase using the superpixel method; δsuperpixel = 7 · 10−5. (f) DMD pattern for the LG10 mode when using Lee holography with k x = k y = 2 π 30 pixel 1. Inset: zoom-in on 20 × 20 DMD pixels. (g,h) Calculated intensity and phase using Lee holography; δLee = 9 · 10−5. Intensities are normalized to total intensity.

Fig. 4
Fig. 4

(a,b) Intensity and phase of a high resolution target field. (c) DMD pattern according to the superpixel method. Inset: zoom-in on 20 × 20 DMD pixels. (d,e) Calculated intensity and phase using the superpixel method; δ superpixel Δ k = 0.8 %. (f) DMD pattern according to the Lee method using k x = k y = 2 π 12 pixel 1. Inset: zoom-in on 20 × 20 DMD pixels. (g,h) Calculated intensity and phase using the Lee method; δ Lee Δ k = 1.6 %. Intensities are normalized to total intensity.

Fig. 5
Fig. 5

Experimental setup. DMD: ViALUX V4100, XGA resolution; CCD: AVT Dolphin F145-B; lenses: 2 inch achromats.

Fig. 6
Fig. 6

(a,b) Calculated intensity and phase using the superpixel method; F superpixel = 0.99 F theoretical Δ k. (c,d) Measured intensity and phase using the superpixel method; F superpixel , measured = 0.98 F theoretical Δ k. Intensities are normalized to total intensity.

Metrics