Abstract

We investigated an early stage of laser-induced periodic surface structure (LIPSS) formation to elucidate the contribution of defects on the formation. 4H-SiC crystals were irradiated by multiple pulses of femtosecond laser with different laser spot sizes. We observed the decrease in formation thresholds of high-spatial-frequency LIPSS (HSFL) and low-spatial-frequency LIPSS (LSFL) with the increased irradiated laser spot size. For smaller laser spot size, HSFL was only formed at the periphery of LSFL formation area, whereas for larger spot size, HSFL was randomly distributed within the laser spot. Our results are coincident with the hypothesis that the existence of defects in crystal contributes to the early stage on the formation of LIPSS, in which the electron excitation via one or two photon absorption in a defect site cause local nanoablation at a laser fluence under the intrinsic ablation threshold, followed by the formation of a nanovoid, which act as a scatterer, and interference of scattered wave and laser pulses lead to HSFL formation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
    [CrossRef]
  2. M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
    [CrossRef]
  3. M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
    [CrossRef]
  4. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
    [CrossRef]
  5. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [CrossRef]
  6. B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
    [CrossRef]
  7. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
    [CrossRef]
  8. J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process. 59, 289–293 (1994).
    [CrossRef]
  9. E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
    [CrossRef]
  10. N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett. 24(2), 143–149 (2006).
    [CrossRef]
  11. C. Teichert, “Self-organization of nanostructures in semiconductor heteroepitaxy,” Phys. Rep. 365(5-6), 335–432 (2002).
    [CrossRef]
  12. A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
    [CrossRef]
  13. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
    [CrossRef]
  14. K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
    [CrossRef]
  15. X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials 29(13), 2049–2059 (2008).
    [CrossRef] [PubMed]
  16. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructures formation by ultrafast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [CrossRef]
  17. R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524(11), L5–L10 (2012).
    [CrossRef]
  18. A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
    [CrossRef]
  19. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [CrossRef]
  20. J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
    [CrossRef]
  21. J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
    [CrossRef]
  22. J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical, surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
    [CrossRef]
  23. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [CrossRef]
  24. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  25. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
    [CrossRef]
  26. M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
    [CrossRef]
  27. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [CrossRef]
  28. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett. 36(2), 229–231 (2011).
    [CrossRef] [PubMed]
  29. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
    [CrossRef]
  30. R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
    [CrossRef] [PubMed]
  31. A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
    [CrossRef]
  32. H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).
  33. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
    [CrossRef]
  34. S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
    [CrossRef]
  35. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [CrossRef] [PubMed]
  36. E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).
  37. A. Galeckas, J. Linnros, and P. Pirouz, “Recombination-induced stacking faults: Evidence for a general mechanism in hexagonal SiC,” Phys. Rev. Lett. 96(2), 025502 (2006).
    [CrossRef] [PubMed]
  38. A. O. Konstantinov and H. Bleichner, “Bright-line defect formation in silicon carbide injection diodes,” Appl. Phys. Lett. 71(25), 3700–3702 (1997).
    [CrossRef]
  39. G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
    [CrossRef] [PubMed]
  40. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(7), S373–S376 (1999).
    [CrossRef]
  41. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
    [CrossRef]
  42. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
    [CrossRef] [PubMed]

2013 (4)

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).

E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[CrossRef] [PubMed]

2012 (8)

F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
[CrossRef] [PubMed]

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524(11), L5–L10 (2012).
[CrossRef]

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[CrossRef]

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
[CrossRef]

M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
[CrossRef]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[CrossRef]

E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
[CrossRef]

2011 (4)

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical, surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[CrossRef]

R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate,” Opt. Lett. 36(2), 229–231 (2011).
[CrossRef] [PubMed]

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
[CrossRef]

2010 (3)

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructures formation by ultrafast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[CrossRef]

2009 (4)

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

2008 (2)

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials 29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

2007 (1)

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

2006 (3)

A. Galeckas, J. Linnros, and P. Pirouz, “Recombination-induced stacking faults: Evidence for a general mechanism in hexagonal SiC,” Phys. Rev. Lett. 96(2), 025502 (2006).
[CrossRef] [PubMed]

A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
[CrossRef]

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett. 24(2), 143–149 (2006).
[CrossRef]

2003 (2)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

2002 (3)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

C. Teichert, “Self-organization of nanostructures in semiconductor heteroepitaxy,” Phys. Rep. 365(5-6), 335–432 (2002).
[CrossRef]

1999 (1)

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

1997 (1)

A. O. Konstantinov and H. Bleichner, “Bright-line defect formation in silicon carbide injection diodes,” Appl. Phys. Lett. 71(25), 3700–3702 (1997).
[CrossRef]

1994 (1)

J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process. 59, 289–293 (1994).
[CrossRef]

1984 (1)

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

1983 (2)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

1982 (1)

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Afshar, M.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[CrossRef]

Ahsan, M. S.

M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
[CrossRef]

Aoki, S.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

Arenholz, E.

J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process. 59, 289–293 (1994).
[CrossRef]

Ashkenasi, D.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Audouard, E.

Baiuerle, D.

J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process. 59, 289–293 (1994).
[CrossRef]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

Bleichner, H.

A. O. Konstantinov and H. Bleichner, “Bright-line defect formation in silicon carbide injection diodes,” Appl. Phys. Lett. 71(25), 3700–3702 (1997).
[CrossRef]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical, surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Buividas, R.

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524(11), L5–L10 (2012).
[CrossRef]

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Cai, L.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
[CrossRef]

Castillejo, M.

E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
[CrossRef]

Chen, W. M.

E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Chin, S. L.

Colombier, J. P.

Costache, F.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

Dai, N.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

Das, S. K.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Datsyuk, V.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Dörr, D.

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Dusser, B.

Emmert, L. A.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

Enami, T.

Epple, M.

Ezquerra, T. A.

E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
[CrossRef]

Faure, N.

Feili, D.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[CrossRef]

Fujie, H.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

Galeckas, A.

A. Galeckas, J. Linnros, and P. Pirouz, “Recombination-induced stacking faults: Evidence for a general mechanism in hexagonal SiC,” Phys. Rev. Lett. 96(2), 025502 (2006).
[CrossRef] [PubMed]

Grunwald, R.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

Hallin, C.

E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).

Hashida, M.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Hashimoto, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Heitz, J.

J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process. 59, 289–293 (1994).
[CrossRef]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

Hertwig, A.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

Höhm, S.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[CrossRef]

Honda, T.

A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
[CrossRef]

Hu, J.

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials 29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Ikuta, Y.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Ionin, A. A.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
[CrossRef]

Iwai, Y.

A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
[CrossRef]

Janzen, E.

E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).

Jourlin, M.

Juodkazis, S.

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524(11), L5–L10 (2012).
[CrossRef]

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Kautek, W.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Kawahara, K.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett. 24(2), 143–149 (2006).
[CrossRef]

Khmelnitsky, R. A.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

Kikuchi, J.

A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
[CrossRef]

Kinoshita, K.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Klimachev, Y. M.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

König, K.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[CrossRef]

Konstantinov, A. O.

A. O. Konstantinov and H. Bleichner, “Bright-line defect formation in silicon carbide injection diodes,” Appl. Phys. Lett. 71(25), 3700–3702 (1997).
[CrossRef]

Kordina, O.

E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).

Kozlov, A. Y.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

Kruger, J.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

Krüger, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical, surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Kudrius, T.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Kudryashov, S. I.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
[CrossRef]

Le Harzic, R.

Lee, M. S.

M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
[CrossRef]

Lenzner, M.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

Li, G.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
[CrossRef]

Li, J.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
[CrossRef]

Li, Y.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

Liang, F.

Ligachev, A. E.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
[CrossRef]

Linnros, J.

A. Galeckas, J. Linnros, and P. Pirouz, “Recombination-induced stacking faults: Evidence for a general mechanism in hexagonal SiC,” Phys. Rev. Lett. 96(2), 025502 (2006).
[CrossRef] [PubMed]

Liu, J. M.

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Lu, P.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

Lu, Q.

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials 29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

Makarov, S. V.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
[CrossRef]

Martin, S.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

Matsuo, S.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Mazur, E.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[CrossRef] [PubMed]

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

Miyasaka, Y.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Miyazaki, K.

A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
[CrossRef]

Mizuno, A.

A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
[CrossRef]

Moreno, P.

E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
[CrossRef]

Mori, A.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett. 24(2), 143–149 (2006).
[CrossRef]

Nakamura, N.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

Neumeier, M.

Obara, G.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[CrossRef] [PubMed]

Obara, M.

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[CrossRef] [PubMed]

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).

Ohlin, C. A.

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials 29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

Okamuro, K.

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Otani, K.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
[CrossRef]

Oya, K.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

Pérez-Hernández, J. A.

E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
[CrossRef]

Phillips, H. M.

J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process. 59, 289–293 (1994).
[CrossRef]

Pirouz, P.

A. Galeckas, J. Linnros, and P. Pirouz, “Recombination-induced stacking faults: Evidence for a general mechanism in hexagonal SiC,” Phys. Rev. Lett. 96(2), 025502 (2006).
[CrossRef] [PubMed]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

Rebollar, E.

E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
[CrossRef]

Reif, J.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

Rosa, L.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical, surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Rudenko, A. A.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

Rudolph, W.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

Sagan, Z.

Sakabe, S.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Sauer, D.

Sauerbrey, R.

J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process. 59, 289–293 (1994).
[CrossRef]

Sawada, H.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett. 24(2), 143–149 (2006).
[CrossRef]

Seidel, H.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[CrossRef]

Seleznev, L. V.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
[CrossRef]

Shimizu, H.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[CrossRef] [PubMed]

Shimomura, K.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

Sinitsyn, D. V.

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
[CrossRef]

Sipe, J. E.

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Slekys, G.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Sliupas, R.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Soder, H.

Son, N. T.

E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).

Sorman, E.

E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).

Stoddart, P. R.

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524(11), L5–L10 (2012).
[CrossRef]

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Stracke, F.

Straub, M.

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[CrossRef]

Sugita, N.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

Suzuki, K.

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

Tagawa, N.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett. 24(2), 143–149 (2006).
[CrossRef]

Takada, M.

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett. 24(2), 143–149 (2006).
[CrossRef]

Teichert, C.

C. Teichert, “Self-organization of nanostructures in semiconductor heteroepitaxy,” Phys. Rep. 365(5-6), 335–432 (2002).
[CrossRef]

Terakawa, M.

G. Obara, H. Shimizu, T. Enami, E. Mazur, M. Terakawa, and M. Obara, “Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses,” Opt. Express 21(22), 26323–26334 (2013).
[CrossRef] [PubMed]

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).

Tokita, S.

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
[CrossRef]

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Tomita, T.

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Vallée, R.

van Driel, H. M.

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Vázquez de Aldana, J. R.

E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
[CrossRef]

Wang, X.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials 29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

Wang, Y.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

Wu, B.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
[CrossRef]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Yasumaru, N.

A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
[CrossRef]

Ye, X.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
[CrossRef]

Young, J. F.

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

Yu, B.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Zheng, Q.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

Zhou, M.

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
[CrossRef]

Zimmermann, H.

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Ann. Phys. (1)

R. Buividas, P. R. Stoddart, and S. Juodkazis, “Laser fabricated ripple substrates for surface-enhanced Raman scattering,” Ann. Phys. 524(11), L5–L10 (2012).
[CrossRef]

Appl. Phys. B (1)

A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, “Direct femtosecond laser fabrication of antireflective layer on GaAs surface,” Appl. Phys. B 111(3), 419–423 (2013).
[CrossRef]

Appl. Phys. Express (1)

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6(11), 112701 (2013).

Appl. Phys. Lett. (4)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

E. Rebollar, J. R. Vázquez de Aldana, J. A. Pérez-Hernández, T. A. Ezquerra, P. Moreno, and M. Castillejo, “Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films,” Appl. Phys. Lett. 100(4), 041106 (2012).
[CrossRef]

A. O. Konstantinov and H. Bleichner, “Bright-line defect formation in silicon carbide injection diodes,” Appl. Phys. Lett. 71(25), 3700–3702 (1997).
[CrossRef]

T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (4)

A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys., A Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon–modification thresholds, and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[CrossRef]

J. Heitz, E. Arenholz, D. Baiuerle, R. Sauerbrey, and H. M. Phillips, “Femtosecond excimer-laser-induced structure formation on polymers,” Appl. Phys., A Mater. Sci. Process. 59, 289–293 (1994).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 77, 883–884 (2003).
[CrossRef]

Appl. Surf. Sci. (3)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical, surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci. 257(12), 5420–5423 (2011).
[CrossRef]

B. Wu, M. Zhou, J. Li, X. Ye, G. Li, and L. Cai, “Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser,” Appl. Surf. Sci. 256(1), 61–66 (2009).
[CrossRef]

Biomaterials (1)

X. Wang, C. A. Ohlin, Q. Lu, and J. Hu, “Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene,” Biomaterials 29(13), 2049–2059 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (6)

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laserinduced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, “Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon,” J. Appl. Phys. 111(12), 124315 (2012).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited:A comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[CrossRef]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[CrossRef]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys. 36(11), 3688–3689 (1965).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

M. Hashida, Y. Miyasaka, Y. Ikuta, K. Otani, S. Tokita, and S. Sakabe, “Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points,” J. Laser Micro/Nanoeng. 7(2), 194–197 (2012).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A, Pure Appl. Opt. 10(3), 035301 (2008).
[CrossRef]

JETP Lett. (1)

A. A. Ionin, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, and D. V. Sinitsyn, “Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface,” JETP Lett. 94(4), 266–269 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Oya, S. Aoki, K. Shimomura, N. Sugita, K. Suzuki, N. Nakamura, and H. Fujie, “Morphological observations of mesenchymal stem cell adhesion to a nanoperiodic-structured titanium surface patterned using femtosecond laser processing,” Jpn. J. Appl. Phys. 51(12R), 125203 (2012).
[CrossRef]

Nanotechnology (1)

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[CrossRef] [PubMed]

Opt. Eng. (1)

M. S. Ahsan and M. S. Lee, “Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses,” Opt. Eng. 51(12), 121815 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

C. Teichert, “Self-organization of nanostructures in semiconductor heteroepitaxy,” Phys. Rep. 365(5-6), 335–432 (2002).
[CrossRef]

Phys. Rev. B (5)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, brass,” Phys. Rev. B 27(2), 1155–1172 (1983).
[CrossRef]

J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, details of the induced topography in germanium,” Phys. Rev. B 30(4), 2001–2015 (1984).
[CrossRef]

E. Sorman, N. T. Son, W. M. Chen, O. Kordina, C. Hallin, and E. Janzen, “Silicon vacancy related defect in 4H and 6H SiC,” Phys. Rev. B 61, 036502 (2013).

K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, “Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation,” Phys. Rev. B 82(16), 165417 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

A. Galeckas, J. Linnros, and P. Pirouz, “Recombination-induced stacking faults: Evidence for a general mechanism in hexagonal SiC,” Phys. Rev. Lett. 96(2), 025502 (2006).
[CrossRef] [PubMed]

Tribol. Lett. (1)

N. Tagawa, M. Takada, A. Mori, H. Sawada, and K. Kawahara, “Development of contact sliders with nanotextures by femtosecond laser processing,” Tribol. Lett. 24(2), 143–149 (2006).
[CrossRef]

Tribol. Online (1)

A. Mizuno, T. Honda, J. Kikuchi, Y. Iwai, N. Yasumaru, and K. Miyazaki, “Friction properties of the DLC film with periodic structures in nano-scale,” Tribol. Online 1(2), 44–48 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images of the SiC surfaces. ω0 = 26 μm. (a) After laser irradiation at E = 11.3 μJ (laser fluence Φ = 530 mJ/cm2), (b) after laser irradiation at E = 340 μJ (Φ = 15.9 J/cm2), and (c) before laser irradiation.

Fig. 2
Fig. 2

Dependence of squared radius of LIPSS formation area on pulse energy. ω0 = 26 μm.

Fig. 3
Fig. 3

Dependence of HSFL formation threshold on spot size. The solid line indicates the theoretical curve of the defect model. Fitting parameters: ΦiH = 0.7 J/cm2, ΦdH = 0.32 J/cm2, d0 = 12 μm.

Fig. 4
Fig. 4

SEM image of the SiC surface after laser irradiation. (a) Φ = 450 mJ/cm2, ω0 = 28 μm. The HSFL and nanorod-shaped craters were randomly distributed in the laser spot, (b) Φ = 1400 mJ/cm2, ω0 = 8 μm.

Fig. 5
Fig. 5

Spot size dependence of LSFL formation threshold fluence. The solid line indicates the theoretical curve of the defect model. Φi = 1 J/cm2, Φd = 0.34 J/cm2, d0 = 12 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r 2 = ω 0 2 ln(E/ E th )
P( ω 0 )=1exp[ π 2 32 ( ω 0 d 0 ) 2 ]
Φ th Φ d P( ω 0 )+ Φ i [ 1P( ω 0 ) ]

Metrics