Abstract

The Temperature dependence of the exciton radiative decay time in ZnO nanorods has been investigated, which is associated with the density of states for the intra-relaxation of thermally excited excitons. The photoluminescence decay time was calibrated by using the photoluminescence intensity in order to obtain the radiative decay time. In the absence of an external magnetic field, we have confirmed that the radiative decay time increased with temperature in a similar manner to that seen in bulk material (∼ T1.5). Under an external magnetic field of 6T parallel to the c-axis, we found that the power coefficient of the radiative decay time with temperature decreased (∼ T1.3) when compared to that in the absence of a magnetic field. This result can be attributed to an enhancement of the effective mass perpendicular to the magnetic field and a redshift of the center-of-mass exciton as a consequence of perturbation effects in the weak-field regime.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Zhong Lin Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter 16, R829–R858 (2004).
  2. Mark Fox, Optical Properties of Solids, 2nd Edition (OXFORD University Press, 2010).
  3. S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A 53, 491–502 (1991).
    [CrossRef]
  4. Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
    [CrossRef] [PubMed]
  5. Claus F. Klingshirn, Semiconductor Optics, 4th Edition (Springer, 2012).
    [CrossRef]
  6. G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
    [CrossRef]
  7. H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
    [CrossRef] [PubMed]
  8. F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
    [CrossRef]
  9. Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).
  10. X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
    [CrossRef]
  11. Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
    [CrossRef]
  12. Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 269104 (2009).
  13. Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B 65, 075207 (2002).
    [CrossRef]
  14. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932–948 (2004).
    [CrossRef]
  15. Brendan Enright and Donald Fizmaurice, “Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film,” J. Phys. Chem. 100, 1027–1035 (1996).
    [CrossRef]
  16. R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures,” Phys. Rev. B 22, 863–871 (1980).
    [CrossRef]
  17. D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
    [CrossRef]
  18. W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82, 964–966 (2003).
    [CrossRef]
  19. Richard L. Liboff, Introductory Quantum Mechanics, 4th Edition (Addison - Wesley, 2003).
  20. Kerson Huang, Statistical Mechanics, 2nd Edition (John Wiley & Sons, 1987).
  21. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
    [CrossRef]
  22. J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
    [CrossRef]

2013

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

2009

Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 269104 (2009).

2008

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

2007

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

2006

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

2005

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

2004

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Zhong Lin Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter 16, R829–R858 (2004).

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932–948 (2004).
[CrossRef]

2003

W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82, 964–966 (2003).
[CrossRef]

2002

Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B 65, 075207 (2002).
[CrossRef]

1997

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

1996

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Brendan Enright and Donald Fizmaurice, “Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film,” J. Phys. Chem. 100, 1027–1035 (1996).
[CrossRef]

1994

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

1991

S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A 53, 491–502 (1991).
[CrossRef]

1987

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[CrossRef]

1980

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures,” Phys. Rev. B 22, 863–871 (1980).
[CrossRef]

Akasaka, S.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Akiyama, H.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Belyanin, A. A.

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

Berger, J. D.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Chemla, D. S.

S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A 53, 491–502 (1991).
[CrossRef]

Chen, Cheng-Yen

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

Chichibu, S. F.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Chua, S. J.

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Cooker, S. A.

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Couteau, Christophe

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Enright, Brendan

Brendan Enright and Donald Fizmaurice, “Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film,” J. Phys. Chem. 100, 1027–1035 (1996).
[CrossRef]

Eung Lee, Nae

Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 269104 (2009).

Fizmaurice, Donald

Brendan Enright and Donald Fizmaurice, “Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film,” J. Phys. Chem. 100, 1027–1035 (1996).
[CrossRef]

Fox, Mark

Mark Fox, Optical Properties of Solids, 2nd Edition (OXFORD University Press, 2010).

Foxon, C. T.

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[CrossRef]

Geng, Wei

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Gibbs, H. M.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Giraudet, Louis

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Gossard, A. C.

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures,” Phys. Rev. B 22, 863–871 (1980).
[CrossRef]

Heo, Y. W.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932–948 (2004).
[CrossRef]

Hooft, G. W. ’t

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[CrossRef]

Huang, Kerson

Kerson Huang, Statistical Mechanics, 2nd Edition (John Wiley & Sons, 1987).

Hyoun, Cheol

Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 269104 (2009).

Inoshita, T.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Ip, K.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932–948 (2004).
[CrossRef]

Jen, Fang-Yi

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

Jho, Y. D.

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Jun, Y. H.

W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82, 964–966 (2003).
[CrossRef]

Jung, S. W.

W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82, 964–966 (2003).
[CrossRef]

Kadow, C.

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Kaliteevski, M. A.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Kavokin, A. V.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Kawasaki, M.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

Khitrova, G.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Kleinman, D. A.

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures,” Phys. Rev. B 22, 863–871 (1980).
[CrossRef]

Klingshirn, Claus F.

Claus F. Klingshirn, Semiconductor Optics, 4th Edition (Springer, 2012).
[CrossRef]

Knox, W. H.

S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A 53, 491–502 (1991).
[CrossRef]

Kocharovsky, V. V.

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

Kocharovsky, Vl. V.

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

Koinuma, H.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

Kono, J.

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Koshiba, S.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Kostcheev, Sergei

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Koun Cho, Hyung

Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 269104 (2009).

Kyrychenko, F. V.

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Lambrecht, Walter R. L.

Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B 65, 075207 (2002).
[CrossRef]

Lau, S. P.

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Lérondel, Gilles

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Liboff, Richard L.

Richard L. Liboff, Introductory Quantum Mechanics, 4th Edition (Addison - Wesley, 2003).

Limpijumnong, Sukit

Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B 65, 075207 (2002).
[CrossRef]

Lin Wang, Zhong

Zhong Lin Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter 16, R829–R858 (2004).

Lindmark, E. K.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Lu, Yen-Cheng

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

Lyngnes, O.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Meyer, Bruno K.

Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B 65, 075207 (2002).
[CrossRef]

Miao, Lei

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Miller, R. C.

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures,” Phys. Rev. B 22, 863–871 (1980).
[CrossRef]

Mohanta, Kumar

Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 269104 (2009).

Molenkamp, L. W.

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[CrossRef]

Molinari, Michael

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Nakahara, K.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Nakamura, Y.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Nelson, T. R.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Nishimoto, Y.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Noge, H.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Nordland, W. A.

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures,” Phys. Rev. B 22, 863–871 (1980).
[CrossRef]

Norton, D. P.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932–948 (2004).
[CrossRef]

Ohtomo, A.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

Onuma, T.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Park, W. I.

W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82, 964–966 (2003).
[CrossRef]

Pearton, S. J.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932–948 (2004).
[CrossRef]

Reitze, D. H.

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Rodina, Anna V.

Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B 65, 075207 (2002).
[CrossRef]

Sallet, Vincent

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Sanders, G. D.

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Sanjay, Ahn

Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 269104 (2009).

Sartel, Corinne

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Schäfer, W.

S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A 53, 491–502 (1991).
[CrossRef]

Schimitt-Rink, S.

S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A 53, 491–502 (1991).
[CrossRef]

Segall, B.

Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B 65, 075207 (2002).
[CrossRef]

Segawa, Y.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

Segawa, Yusaburo

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

Shimizu, A.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Simonetti, Olivier

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Solomon, G. S.

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

Someya, T.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Stanton, C. J.

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Stark, J. B.

S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A 53, 491–502 (1991).
[CrossRef]

Steiner, T.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932–948 (2004).
[CrossRef]

Sun, X. W.

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Takamizu, D.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Takasu, H.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Tamura, K.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Tanabe, T.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Tanemura, Masaki

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Tanemura, Sakae

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Tang, Z. K.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

van der Poel, W. A. J. A.

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[CrossRef]

Wada, K.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Wang, Hsiang-Chen

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

Wang, Xiaoming

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

Wei, X.

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Wong, G. K. L.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

Yang, C. C.

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

Yang, H. Y.

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Yi, Gyu-Chul

W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82, 964–966 (2003).
[CrossRef]

Yong, A. M.

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Yu, S. F.

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Yuji, H.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

Zapasskii, V. V.

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Zhang, Bao-ping

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

Zhang, X. H.

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Zu, P.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

Appl. Phys. A

S. Schimitt-Rink, J. B. Stark, W. H. Knox, D. S. Chemla, and W. Schäfer, “Optical properties of quasi-zero-dimensional magneto-excitons,” Appl. Phys. A 53, 491–502 (1991).
[CrossRef]

Appl. Phys. Lett.

X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, Lei Miao, Masaki Tanemura, and Sakae Tanemura, “Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method,” Appl. Phys. Lett. 90, 013107 (2007).
[CrossRef]

Fang-Yi Jen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Yusaburo Segawa, “Temperature-dependent exciton dynamics in a ZnO thin film,” Appl. Phys. Lett. 87, 252117 (2005).
[CrossRef]

Cheol Hyoun, Ahn Sanjay, Kumar Mohanta, Nae Eung Lee, and Hyung Koun Cho, “Enhanced exciton-phonon interactions in photoluminescence of ZnO nanopencils,” Appl. Phys. Lett. 94, 269104 (2009).

W. I. Park, Y. H. Jun, S. W. Jung, and Gyu-Chul Yi, “Excitonic emissions observed in ZnO single crystal nanorods,” Appl. Phys. Lett. 82, 964–966 (2003).
[CrossRef]

J. Appl. Phys.

D. Takamizu, Y. Nishimoto, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Onuma, T. Tanabe, H. Takasu, M. Kawasaki, and S. F. Chichibu, “Direct correlation between the internal quantum efficiency and photoluminescence lifetime in undoped ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 103, 063502 (2008).
[CrossRef]

J. Phys. Chem.

Brendan Enright and Donald Fizmaurice, “Spectroscopic Determination of Electron and Hole Effective Masses in a Nanocrystalline Semiconductor Film,” J. Phys. Chem. 100, 1027–1035 (1996).
[CrossRef]

J. Phys.: Condens. Matter

Zhong Lin Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.: Condens. Matter 16, R829–R858 (2004).

J. Vac. Sci. Technol. B

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932–948 (2004).
[CrossRef]

Phisica E

F. V. Kyrychenko, Y. D. Jho, J. Kono, S. A. Cooker, G. D. Sanders, D. H. Reitze, C. J. Stanton, X. Wei, C. Kadow, and A. C. Gossard, “Interband magnetoabsorption study of the shift of the Fermi energy of a 2DEG with an in-plane magnetic field,” Phisica E 22, 624–627 (2004).
[CrossRef]

Phys. Rev. B

G. W. ’t Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, “Giant oscillator strength of free excitons in GaAs,” Phys. Rev. B 35, 8281–8284 (1987).
[CrossRef]

R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, “Luminescence studies of optically pumped quantum wells in GaAs-AlxGa1−xAs multilayer structures,” Phys. Rev. B 22, 863–871 (1980).
[CrossRef]

Walter R. L. Lambrecht, Anna V. Rodina, Sukit Limpijumnong, B. Segall, and Bruno K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Phys. Rev. B 65, 075207 (2002).
[CrossRef]

Phys. Rev. Lett.

H. Akiyama, S. Koshiba, T. Someya, K. Wada, H. Noge, Y. Nakamura, T. Inoshita, and A. Shimizu, “Thermalization Effect on Radiative Decay of Exciton in Quantum Wires,” Phys. Rev. Lett. 72, 924–927 (1994).
[CrossRef] [PubMed]

Y. D. Jho, Xiaoming Wang, J. Kono, D. H. Reitze, X. Wei, A. A. Belyanin, V. V. Kocharovsky, Vl. V. Kocharovsky, and G. S. Solomon, “Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells,” Phys. Rev. Lett. 96, 237401 (2006).
[CrossRef] [PubMed]

Phys. Revs. B

J. D. Berger, O. Lyngnes, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokin, M. A. Kaliteevski, and V. V. Zapasskii, “Magnetic-field enhancement of the exciton-polariton splitting in a semiconductor quantum-well microcavity: The strong coupling threshold,” Phys. Revs. B 54, 1975–1981 (1996).
[CrossRef]

Phys. Status Solidi C.

Wei Geng, Sergei Kostcheev, Corinne Sartel, Vincent Sallet, Michael Molinari, Olivier Simonetti, Gilles Lérondel, Louis Giraudet, and Christophe Couteau, “Ohmic contact on single ZnO nanowires grown by MOCVD,” Phys. Status Solidi C. 10, 1292–1296 (2013).

Solid State Commun.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun. 103, 459–463 (1997).
[CrossRef]

Other

Richard L. Liboff, Introductory Quantum Mechanics, 4th Edition (Addison - Wesley, 2003).

Kerson Huang, Statistical Mechanics, 2nd Edition (John Wiley & Sons, 1987).

Claus F. Klingshirn, Semiconductor Optics, 4th Edition (Springer, 2012).
[CrossRef]

Mark Fox, Optical Properties of Solids, 2nd Edition (OXFORD University Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEM images of ZnO nanorods, where the average length is ∼ 5μm (left image) and the size of a hexagonal crosssection is ∼ 250nm (right image) (a). PL spectrum at 10 K, 20 K, and 30 K in absence/presence of magnetic field (b)/(c), where the individual PL spectrum of D0X (dotted) and FX (shadow) are extracted by Gaussian fitting, and the central emission energy and the linewidth in eV are shown in the parentheses

Fig. 2
Fig. 2

TR-PL intensity of the FX for various temperatures in the absence/presence ((a)/(b)) of magnetic field. Temperature dependence of the PL decay time (τ(T)) (c) and ratio of the IQE with temperature to the IQE at 4K (ζ(T) = η(T)/η(4K)) (d) are shown with (open triangles) and without (filled triangles) external magnetic field up to ∼ 40K, beyond which non-radiative decay dominates, resulting in significant increase in τ(T) and a decrease in ζ(T) as shown in insets.

Fig. 3
Fig. 3

(a) Temperature dependence of the radiative decay time with and without magnetic field. (b) Excitons in the small k-range (kex < k0) decay radiatively, whilst the population ratio with all excited excitons determines the temperature dependence of the radiative decay time (τr(T)). In the case of the weak-field regime, the perturbation energy of external magnetic field (B = 6T) gives rise to a redshift, and the effective mass perpendicular to the c-axis in a ZnO nanorod becomes heavier relatively ( M * > M ).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d N d t = g N τ ,
I ( T ) I ( 4 K ) = η ( T ) η ( 4 K ) = ζ ( T ) ,
τ r ( T ) η ( 4 K ) = τ ( T ) ζ ( T ) .
τ r ( T ) = τ 0 r ( T ) ,
r ( T ) = 0 Δ D ( ε ) e ε / k B T d ε 0 D ( ε ) e ε / k B T d ε ,

Metrics