Abstract

An ultra-compact electro-absorption (EA) modulator operating around 1.55-μm telecom wavelengths is proposed and theoretically investigated. The modulator is comprised of a stack of TiN/HfO2/ITO/Cu conformally deposited on a single-mode stripe waveguide to form a hybrid plasmonic waveguide (HPW). Since the thin ITO layer can behave as a semiconductor, the stack itself forms a MOS capacitor. A voltage is applied between the Cu and TiN layers to change the electron concentration of ITO (NITO), which in turn changes its permittivity as well as the propagation loss of HPW. For a HPW comprised of a Cu/3-nm-ITO/5-nm-HfO2/5-nm-TiN stack on a 400-nm × 340-nm-Si stripe waveguide, the propagation loss for the 1.55-μm TE (TM) mode increases from 1.6 (1.4) to 23.2 (23.9) dB/μm when the average NITO in the 3-nm ITO layer increases from 2 × 1020 to 7 × 1020 cm−3, which is achieved by varying the voltage from −2 to 4 V if the initial NITO is 3.5 × 1020 cm−3. As a result, a 1-μm-long EA modulator inserted in the 400-nm × 340-nm-Si stripe waveguide exhibits insertion loss of 2.9 (3.2) dB and modulation depth of 19.9 (15.2) dB for the TE (TM) mode. The modulation speed is ~11 GHz, limited by the RC delay, and the energy consumption is ~0.4 pJ/bit. The stack can also be deposited on a low-index-contrast waveguide such as Si3N4. For example, a 4-μm-long EA modulator inserted in an 800-nm × 600-nm-Si3N4 stripe waveguide exhibits insertion loss of 6.3 (3.5) dB and modulation depth of 16.5 (15.8) dB for the TE (TM) mode. The influences of the ITO, TiN, HfO2 layers and the beneath dielectric core, as well as the processing tolerance, on the performance of the proposed EA modulator are systematically investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2011).
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
    [CrossRef]
  3. D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
    [CrossRef]
  4. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).
  5. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
    [CrossRef] [PubMed]
  6. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials mechanics and optics meet,” Opt. Mater. Express 3(9), 1313–1331 (2013).
    [CrossRef]
  7. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4(2), 83–91 (2010).
    [CrossRef]
  8. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
    [CrossRef]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  10. S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
    [CrossRef]
  11. S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
    [CrossRef] [PubMed]
  12. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [CrossRef] [PubMed]
  13. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
    [CrossRef]
  14. Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4(3), 735–740 (2012).
    [CrossRef]
  15. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [CrossRef]
  16. A. Melikyan, T. Vallaitis, N. Lindenmann, T. Schimmel, W. Freude, and J. Leuthold, “A surface plasmon polariton absorption modulator,” in Conf. on Lasers and Electro-optics (CLEO), Optical Society of America, San Jose, California (2010), p. JThE77.
  17. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19(9), 8855–8869 (2011).
    [CrossRef] [PubMed]
  18. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
    [CrossRef] [PubMed]
  19. A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
    [CrossRef] [PubMed]
  20. V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
    [CrossRef] [PubMed]
  21. J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C 112(6), 1938–1945 (2008).
    [CrossRef]
  22. http://www.ioffe.ru/SVA/NSM/nk/Nitrides/Gif/tini.gif .
  23. S. Roberts, “Optical properties of copper,” Phys. Rev. 118(6), 1509–1518 (1960).
    [CrossRef]
  24. https://www.synopsys.com/TOOLS/TCAD/DEVICESIMULATION/Pages/TaurusMedici.aspx .
  25. H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).
  26. D. A. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012).
    [CrossRef] [PubMed]
  27. https://www.lumerical.com/ .
  28. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
    [CrossRef] [PubMed]
  29. S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett. 24(14), 1224–1226 (2012).
    [CrossRef]
  30. S. Zhu, G. Q. Lo, and D. L. Kwong, “Silicon nitride based plasmonic components for CMOS back-end-of-line integration,” Opt. Express 21(20), 23376–23390 (2013).
    [CrossRef] [PubMed]
  31. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
    [CrossRef]
  32. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm,” Opt. Lett. 34(6), 839–841 (2009).
    [CrossRef] [PubMed]

2013 (5)

2012 (5)

D. A. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012).
[CrossRef] [PubMed]

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4(3), 735–740 (2012).
[CrossRef]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett. 24(14), 1224–1226 (2012).
[CrossRef]

2011 (6)

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19(9), 8855–8869 (2011).
[CrossRef] [PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

2010 (5)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4(2), 83–91 (2010).
[CrossRef]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
[CrossRef]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

2009 (3)

F. Michelotti, L. Dominici, E. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm,” Opt. Lett. 34(6), 839–841 (2009).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

2008 (1)

J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C 112(6), 1938–1945 (2008).
[CrossRef]

2002 (1)

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

1960 (1)

S. Roberts, “Optical properties of copper,” Phys. Rev. 118(6), 1509–1518 (1960).
[CrossRef]

Atwater, H. A.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Babicheva, V. E.

Bahoura, M.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Baker, D. A.

J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C 112(6), 1938–1945 (2008).
[CrossRef]

Barnakov, Y. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Bergman, K.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Biberman, A.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Boltasseva, A.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4(2), 83–91 (2010).
[CrossRef]

Brongersma, M. L.

Cassan, E.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Chan, J.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Crozat, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Danz, N.

Descrovi, E.

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dominici, L.

Elam, J. W.

J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C 112(6), 1938–1945 (2008).
[CrossRef]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Fedeli, J.-M.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

Ferrera, M.

Freude, W.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4(2), 83–91 (2010).
[CrossRef]

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Hahn, H.

Halbwax, M.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Hendry, G.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Hu, J.

Hupp, J. T.

J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C 112(6), 1938–1945 (2008).
[CrossRef]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Jeon, H.

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

Kang, J. H.

Kim, H. K.

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

Kim, J. Y.

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

Kim, W. M.

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

Kim, Y.

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

Kim, Y. D.

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

Kinsey, N.

Koos, C.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[CrossRef] [PubMed]

Kwong, D. L.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Silicon nitride based plasmonic components for CMOS back-end-of-line integration,” Opt. Express 21(20), 23376–23390 (2013).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett. 24(14), 1224–1226 (2012).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[CrossRef]

Laval, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Lavrinenko, A. V.

Le Roux, X.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Leufke, P. M.

Leuthold, J.

Levy, J. S.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Li, L.

Lin, H.

Lindenmann, N.

Liow, T. Y.

Lipson, M.

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Liu, X.

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Lo, G. Q.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Silicon nitride based plasmonic components for CMOS back-end-of-line integration,” Opt. Express 21(20), 23376–23390 (2013).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett. 24(14), 1224–1226 (2012).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

Lu, Z.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4(3), 735–740 (2012).
[CrossRef]

Lupu, A.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Lyan, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[CrossRef]

Ma, Z.

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
[CrossRef]

Maine, S.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Marris-Morini, D.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Martinson, A. B. F.

J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C 112(6), 1938–1945 (2008).
[CrossRef]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[CrossRef]

Melikyan, A.

Menchini, F.

Michelotti, F.

Miller, D. A.

Mundle, R.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Naik, G. V.

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Park, J.

Park, J. Y.

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

Pellin, M. J.

J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C 112(6), 1938–1945 (2008).
[CrossRef]

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Pradhan, A. K.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Preston, K.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Rasigade, G.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[CrossRef]

Rivallin, P.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Roberts, S.

S. Roberts, “Optical properties of copper,” Phys. Rev. 118(6), 1509–1518 (1960).
[CrossRef]

Schimmel, T.

Shalaev, V. M.

Sherwood-Droz, N.

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Shi, K.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4(3), 735–740 (2012).
[CrossRef]

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[CrossRef]

Ulrich, S.

Vasudev, A. P.

Vincze, P.

Vivien, L.

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Walheim, S.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

Ye, J.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[CrossRef] [PubMed]

Zhang, P.

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[CrossRef]

Zhao, W.

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4(3), 735–740 (2012).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
[CrossRef]

Zhou, W.

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

Zhu, S.

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Silicon nitride based plasmonic components for CMOS back-end-of-line integration,” Opt. Express 21(20), 23376–23390 (2013).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett. 24(14), 1224–1226 (2012).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

ACM J. Emerging Technol. Comput. Syst. (1)

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7, 7 (2011).

Appl. Phys. Lett. (2)

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99(2), 021101 (2011).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides,” Appl. Phys. Lett. 99(15), 151114 (2011).
[CrossRef]

IEEE Photon. J. (1)

Z. Lu, W. Zhao, and K. Shi, “Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides,” IEEE Photon. J. 4(3), 735–740 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett. 24(14), 1224–1226 (2012).
[CrossRef]

J. Korean Phys. Soc. (1)

H. K. Kim, J. Y. Kim, J. Y. Park, Y. Kim, Y. D. Kim, H. Jeon, and W. M. Kim, “Metalorganic atomic layer deposition of TiN thin films using TDMAT and NH3,” J. Korean Phys. Soc. 41, 739–744 (2002).

J. Phys. Chem. C (1)

J. W. Elam, D. A. Baker, A. B. F. Martinson, M. J. Pellin, and J. T. Hupp, “Atomic layer deposition of indium tin oxide thin film using na halogenated precursors,” J. Phys. Chem. C 112(6), 1938–1945 (2008).
[CrossRef]

Laser Photon. Rev. (2)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[CrossRef]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4(4), 562–567 (2010).
[CrossRef]

Nano Lett. (2)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[CrossRef] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[CrossRef]

Nat. Photon. (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4(2), 83–91 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photon. 4(8), 518–526 (2010).
[CrossRef]

Opt. Express (8)

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express 21(7), 8320–8330 (2013).
[CrossRef] [PubMed]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19(9), 8855–8869 (2011).
[CrossRef] [PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Silicon nitride based plasmonic components for CMOS back-end-of-line integration,” Opt. Express 21(20), 23376–23390 (2013).
[CrossRef] [PubMed]

A. P. Vasudev, J. H. Kang, J. Park, X. Liu, and M. L. Brongersma, “Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material,” Opt. Express 21(22), 26387–26397 (2013).
[CrossRef] [PubMed]

V. E. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21(22), 27326–27337 (2013).
[CrossRef] [PubMed]

D. A. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

S. Roberts, “Optical properties of copper,” Phys. Rev. 118(6), 1509–1518 (1960).
[CrossRef]

Phys. Rev. Lett. (1)

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, and S. Laval, “Recent progress in high-speed silicon-based optical modulators,” Proc. IEEE 97 (7), 1199–1215 (2009).
[CrossRef]

Other (5)

D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration (Springer, 2011).

A. Melikyan, T. Vallaitis, N. Lindenmann, T. Schimmel, W. Freude, and J. Leuthold, “A surface plasmon polariton absorption modulator,” in Conf. on Lasers and Electro-optics (CLEO), Optical Society of America, San Jose, California (2010), p. JThE77.

https://www.synopsys.com/TOOLS/TCAD/DEVICESIMULATION/Pages/TaurusMedici.aspx .

https://www.lumerical.com/ .

http://www.ioffe.ru/SVA/NSM/nk/Nitrides/Gif/tini.gif .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(a) 3D view and (b) cross-sectional view of the proposed EA modulator integrated with a stripe dielectric waveguide.

Fig. 2
Fig. 2

The calculated real part and imaginary part of the ITO’s permittivity as a function of electron concentration in ITO, the real part of the permittivity crosses zero at a certain NITO, which is defined as the ENZ point.

Fig. 3
Fig. 3

(a) A simplified 2D structure for electrical simulation. (b) 1D election concentration distribution along y coordinate in the 3-nm ITO layer under different voltages, obtained from the MEDICI simulation. The dashed lines represent the average concentrations in the 3-nm ITO layer. (c) Average NITO in the accumulation layer versus voltage in the case of tAcL = 1, 2, or 3 nm.

Fig. 4
Fig. 4

The transient response of the electron concentration in the 3-nm-thick ITO layer under a gate voltage variation between −2 and 4 V. The rise time and fall time are defined as the time period for 10% to 90% NITO variation. The red curve represents the device with a reduced R, which can be achieved by reducing TiN resistivity, increasing TiN layer thickness, and/or shortening the lateral distance of two electrodes.

Fig. 5
Fig. 5

The mode properties, i.e., the propagation loss α, the α differentiation dα/dNITO, the real part of the effective mode index neff, and the ratio of electric field intensity in the ITO layer, of the Cu/3-nm-ITO/5-nm-HfO2/5-nm-TiN/Si HPWs versus the electron concentration NITO in the 3-nm ITO layer for (a) quasi-TE mode and (b) quasi-TM mode. The dash lines represent the ENZ point.

Fig. 6
Fig. 6

2D electric field distribution in the Cu/3-nm-ITO/5-nm-HfO2/5-nm-TiN/400-nm × 340-nm-Si: (a) TE mode, Ex at “ON”-state, (b) TM mode, Ey at “ON”-state, (c) TE mode, Ex at “OFF”-state, and (d) TM mode, Ey at “OFF”-state. Normalized 1D distributions near the ITO interface: (e) along the a-a’ line for the TE mode and (f) along the b-b’ line for the TM mode, the inset are the distributions in the whole structure as well as the distributions in the 400-nm × 340-nm Si waveguide.

Fig. 7
Fig. 7

FoM of HPWs with different Si core sizes for (a) quasi-TE mode and (b) quasi-TE mode.

Fig. 8
Fig. 8

(a) The absolute value of Poynting vector along the Y-cut at the center of the Si waveguide under the TE excitation at the “OFF” and “ON” states, (b) Ex distributions in the input Si waveguide, the middle of modulator, and the output Si waveguide, (c) The absolute value of Poynting vector along the X-cut at the center of the Si waveguide under the TM excitation at the “OFF” and “ON” states, (d) Ey distributions in the input Si waveguide, the middle of modulator, and the output Si waveguide.

Fig. 9
Fig. 9

Transmitted powers of an EA modulator inserted in a 400-nm × 340-nm Si stripe waveguide at the “ON” and “OFF”-states as a function of the modulator’s length. The EA modulator has the same dimension of Si core as the input/output Si waveguide.

Fig. 10
Fig. 10

The mode properties (i.e., the propagation loss α, the real part of the effective mode index neff, and the ratio of electric field intensity in the ITO layer) of the Cu/3-nm-ITO/5-nm-HfO2/5-nm-TiN/Si3N4 HPWs as a function of average electron concentration NITO in the 3-nm ITO layer for (a) quasi-TE mode and (b) quasi-TM mode. The dash lines represent the ENZ point.

Fig. 11
Fig. 11

(a) The absolute value of Poynting vector along the Y-cut at the center of the Si3N4 waveguide under the TE excitation at the “OFF” and “ON” states, the modulator has a 400-nm × 600-nm Si3N4 core inserted in the 800-nm × 600-nm stripe Si3N4 waveguide through 1-μm-long tapered couplers. (b) Ex distributions in the input Si3N4 waveguide, the middle of modulator, and the output Si3N4 waveguide, (c) The absolute value of Poynting vector along the X-cut at the center of the Si3N4 waveguide under the TM excitation at the “OFF” and “ON” states, the modulator has the same 800-nm × 600-nm Si3N4 core as the input/output Si3N4 stripe waveguide. (d) Ey distributions in the input Si3N4 waveguide, the middle of modulator, and the output Si3N4 waveguide.

Fig. 12
Fig. 12

Transmitted powers of Si3N4 EA modulators inserted in the 800-nm × 600-nm Si3N4 stripe waveguide at the “ON” and “OFF”-states as a function of the modulator’s length. The TE modulator has 400-nm × 600-nm Si3N4 core and two 1-μm-long tapered couplers, and the TM modulator has 800-nm × 600-nm Si3N4 core, as shown schematically in the right.

Fig. 13
Fig. 13

(a) αon and (b) the difference of αoff and αon of the Cu/ITO/5-nm-HfO2/5-nm-TiN/400-nm × 340-nm-Si HPWs at the “ON” and “OFF”-states as a function of tITO by assuming the AcL thickness tAcL of 1, 2, or 3 nm, respectively. NITO inside AcL is 2 × 1020 cm−3 at the “ON”-state and 7 × 1020 cm−3 at “OFF”-state whereas NITO outside AcL is 3.5 × 1020 cm−3.

Fig. 14
Fig. 14

αon (at NITO = 2 × 1020 cm−3), αon – αoff, and NITO for the maximum propagation loss of the Cu/ITO/5-nm-HfO2/5-nm-TiN/400-nm × 340-nm-Si HPWs as a function of ε and Γ of ITO: (a) ε varies from 3.1 to 4.1 while Γ = 1.8 × 1014 s−1 and (b) Γ varies from 1.2 to 2.6 while ε = 3.9.

Fig. 15
Fig. 15

The influence of the thin TiN layer on the modulator’s performance: (a) TiN has permittivity of −16.66 + 7.52j while its thickness ranges from 0 to 10 nm, (b) TiN has thickness of 5 nm while different permittivity values.

Fig. 16
Fig. 16

The influence of the HfO2 layer on the modulator’s performance: (a) HfO2 has refractive index of 1.87 while its thickness ranges from 1 to 12 nm. (b) The gate oxide has thickness of 5 nm while its refractive index ranges from 1.44 to 2.4.

Fig. 17
Fig. 17

(a) Schematic top view of the modulator, showing a possible misalignment of ΔL between the TiN layer and the Cu/ITO/HfO2 stack, (b) Insertion loss and modulation depth of the 1-μm-long Si EA modulator as a function of the misalignment ΔL.

Metrics