Abstract

We have developed an electro-optic (EO) sampling method with polarization modulation of probe pulses; this method allows us to measure the direction of a terahertz (THz) electric-field vector with a precision of 0.1 mrad in a data acquisition time of 660 ms using a 14.0-kHz repetition rate pulsed light source. Through combination with a THz time-domain spectroscopy technique, a time-dependent two-dimensional THz electric field was obtained. We used a photoelastic modulator for probe-polarization modulation and a (111)-oriented zincblende crystal as the EO crystal. Using the tilted pulse front excitation method with stable regeneratively amplified pulses, we prepared stable and intense THz pulses and performed pulse-by-pulse analog-to-digital conversion of the signals. These techniques significantly reduced statistical errors and enabled sub-mrad THz polarization measurements. We examined the performance of this method by measuring a wire-grid polarizer as a sample. The present method will open a new frontier of high-precision THz polarization sensitive measurements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [CrossRef]
  2. T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett. 79(24), 3917 (2001).
    [CrossRef]
  3. T. Kampfrath, K. Tanaka, and K. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
    [CrossRef]
  4. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
    [CrossRef]
  5. J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
    [CrossRef]
  6. X. Wang, Y. Cui, W. Sun, J. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
    [CrossRef] [PubMed]
  7. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
    [CrossRef] [PubMed]
  8. K. Wiesauer and C. Jördens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter Terahertz Waves 34(11), 663–681 (2013).
    [CrossRef]
  9. S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
    [CrossRef] [PubMed]
  10. R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199 (2002).
    [CrossRef]
  11. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15(18), 11117–11125 (2007).
    [CrossRef] [PubMed]
  12. T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
    [CrossRef]
  13. K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging (Springer & Heidelberg Berlin, 2013), Chap. 11.
  14. R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
    [CrossRef] [PubMed]
  15. L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
    [CrossRef]
  16. E. Castro-Camus, “Polarization-Resolved Terahertz Time-Domain Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 33(4), 418–430 (2012).
    [CrossRef]
  17. Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
    [CrossRef]
  18. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
    [CrossRef] [PubMed]
  19. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
    [CrossRef]
  20. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15(11), 7047–7057 (2007).
    [CrossRef] [PubMed]
  21. H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15(18), 11650–11657 (2007).
    [CrossRef] [PubMed]
  22. N. Yasumatsu and S. Watanabe, “Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor,” Rev. Sci. Instrum. 83(2), 023104 (2012).
    [CrossRef] [PubMed]
  23. M. Neshat and N. P. Armitage, “Improved measurement of polarization state in terahertz polarization spectroscopy,” Opt. Lett. 37(11), 1811–1813 (2012).
    [CrossRef] [PubMed]
  24. Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
    [CrossRef]
  25. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [CrossRef] [PubMed]
  26. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
    [CrossRef] [PubMed]
  27. R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012).
    [CrossRef] [PubMed]
  28. S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
    [CrossRef]
  29. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection Rules for Light-Induced Magnetization of a Crystal with Threefold Symmetry: The Case of Antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
    [CrossRef] [PubMed]
  30. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
    [CrossRef] [PubMed]
  31. Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21(9), 10642–10650 (2013).
    [CrossRef] [PubMed]
  32. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
    [CrossRef]
  33. K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
    [CrossRef] [PubMed]
  34. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21(3), 622–631 (2004).
    [CrossRef]
  35. N. Yasumatsu and S. Watanabe, “Development of the terahertz electric-field vector sensing method by using the electro-optic modulator,” in The 61st JSAP Spring Meeting,2014, (Aoyama Gakin Univ., Sagamihara, Japan, 2014), 18p-E17–3P.

2014 (2)

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[CrossRef] [PubMed]

2013 (7)

Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21(9), 10642–10650 (2013).
[CrossRef] [PubMed]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
[CrossRef] [PubMed]

K. Wiesauer and C. Jördens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter Terahertz Waves 34(11), 663–681 (2013).
[CrossRef]

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[CrossRef]

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

T. Kampfrath, K. Tanaka, and K. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[CrossRef]

2012 (7)

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

E. Castro-Camus, “Polarization-Resolved Terahertz Time-Domain Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 33(4), 418–430 (2012).
[CrossRef]

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[CrossRef]

N. Yasumatsu and S. Watanabe, “Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor,” Rev. Sci. Instrum. 83(2), 023104 (2012).
[CrossRef] [PubMed]

M. Neshat and N. P. Armitage, “Improved measurement of polarization state in terahertz polarization spectroscopy,” Opt. Lett. 37(11), 1811–1813 (2012).
[CrossRef] [PubMed]

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

2011 (2)

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection Rules for Light-Induced Magnetization of a Crystal with Threefold Symmetry: The Case of Antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[CrossRef] [PubMed]

2010 (2)

2008 (1)

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
[CrossRef]

2007 (3)

2005 (2)

N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005).
[CrossRef] [PubMed]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[CrossRef]

2004 (2)

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21(3), 622–631 (2004).
[CrossRef]

2002 (2)

J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[CrossRef] [PubMed]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199 (2002).
[CrossRef]

2001 (1)

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett. 79(24), 3917 (2001).
[CrossRef]

1994 (1)

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

1990 (1)

Allen, S. J.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Almási, G.

Aoki, H.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

Armitage, N. P.

Birge, R. R.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Castro-Camus, E.

E. Castro-Camus, “Polarization-Resolved Terahertz Time-Domain Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 33(4), 418–430 (2012).
[CrossRef]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15(11), 7047–7057 (2007).
[CrossRef] [PubMed]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[CrossRef]

Chua, S. J.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

Clarke, J.

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Cui, Y.

Deng, L. Y.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

Exter, M.

Fattinger, C.

Fraser, M. D.

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[CrossRef]

Fu, L.

Galan, J.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Golde, D.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Granados, E.

Grischkowsky, D.

Hangyo, M.

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[CrossRef]

H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15(18), 11650–11657 (2007).
[CrossRef] [PubMed]

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett. 79(24), 3917 (2001).
[CrossRef]

Hebling, J.

Helm, M.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[CrossRef]

Hibino, H.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

Higuchi, T.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[CrossRef] [PubMed]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection Rules for Light-Induced Magnetization of a Crystal with Threefold Symmetry: The Case of Antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

Hirota, Y.

Hohenleutner, M.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Hong, K.-H.

Huang, S.-W.

Huang, W. R.

Huber, R.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Hubrich, R.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[CrossRef]

Huttner, U.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Ikebe, Y.

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
[CrossRef]

Imai, R.

Ino, Y.

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199 (2002).
[CrossRef]

Ishii, S.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[CrossRef] [PubMed]

Jagadish, C.

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15(11), 7047–7057 (2007).
[CrossRef] [PubMed]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[CrossRef]

Johnston, M. B.

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15(11), 7047–7057 (2007).
[CrossRef] [PubMed]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[CrossRef]

Jördens, C.

K. Wiesauer and C. Jördens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter Terahertz Waves 34(11), 663–681 (2013).
[CrossRef]

M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18(10), 10137–10142 (2010).
[CrossRef] [PubMed]

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[CrossRef]

Kanda, N.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21(9), 10642–10650 (2013).
[CrossRef] [PubMed]

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection Rules for Light-Induced Magnetization of a Crystal with Threefold Symmetry: The Case of Antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[CrossRef] [PubMed]

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15(18), 11117–11125 (2007).
[CrossRef] [PubMed]

Kärtner, F. X.

Keiding, S.

Kira, M.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Koch, M.

Koch, S. W.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Konishi, K.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[CrossRef] [PubMed]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21(9), 10642–10650 (2013).
[CrossRef] [PubMed]

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[CrossRef] [PubMed]

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15(18), 11117–11125 (2007).
[CrossRef] [PubMed]

Kozma, I. Z.

Kuhl, J.

Kuwata-Gonokami, M.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[CrossRef] [PubMed]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

Z. Zheng, N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Efficient coupling of propagating broadband terahertz radial beams to metal wires,” Opt. Express 21(9), 10642–10650 (2013).
[CrossRef] [PubMed]

R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, and M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20(20), 21896–21904 (2012).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection Rules for Light-Induced Magnetization of a Crystal with Threefold Symmetry: The Case of Antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express 15(18), 11117–11125 (2007).
[CrossRef] [PubMed]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199 (2002).
[CrossRef]

Lange, C.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Langer, F.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Larsson, J.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[CrossRef] [PubMed]

Lew, D. J.

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Li, J.

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[CrossRef] [PubMed]

Liu, H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

Lloyd-Hughes, J.

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15(11), 7047–7057 (2007).
[CrossRef] [PubMed]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[CrossRef]

Lü, Z.

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

Ludwig, F.

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Makabe, H.

Matsunaga, R.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

Meier, T.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Meng, C.

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

Merchant, P.

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Misawa, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

Mittendorff, M.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[CrossRef]

Morimoto, T.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

Nagashima, T.

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[CrossRef]

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett. 79(24), 3917 (2001).
[CrossRef]

Nelson, K.

T. Kampfrath, K. Tanaka, and K. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[CrossRef]

Nemeth, D. T.

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Neshat, M.

Orenstein, J.

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Parks, B.

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Planken, P. C. M.

Plaxco, K.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Ramian, G.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Sato, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

Savvidis, P.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Scheller, M.

Schneider, H.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[CrossRef]

Schubert, O.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

Scopatz, A.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Shimano, R.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
[CrossRef]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199 (2002).
[CrossRef]

Shimizu, H.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Spielman, S.

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Sun, L.

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

Sun, W.

Suzuki, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

Svirko, Yu. P.

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199 (2002).
[CrossRef]

Tamaru, H.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection Rules for Light-Induced Magnetization of a Crystal with Threefold Symmetry: The Case of Antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

Tan, H. H.

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15(11), 7047–7057 (2007).
[CrossRef] [PubMed]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[CrossRef]

Tanabe, S.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[CrossRef]

Tani, M.

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[CrossRef]

H. Makabe, Y. Hirota, M. Tani, and M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15(18), 11650–11657 (2007).
[CrossRef] [PubMed]

Teng, J. H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

Urbanek, B.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

van der Marel, W. A. M.

van der Valk, N. C. J.

Wang, X.

Watanabe, S.

N. Yasumatsu and S. Watanabe, “Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor,” Rev. Sci. Instrum. 83(2), 023104 (2012).
[CrossRef] [PubMed]

Wenckebach, T.

Wiesauer, K.

K. Wiesauer and C. Jördens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter Terahertz Waves 34(11), 663–681 (2013).
[CrossRef]

Winnerl, S.

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[CrossRef]

Wu, Q. Y.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

Xu, J.

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Yasumatsu, N.

N. Yasumatsu and S. Watanabe, “Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor,” Rev. Sci. Instrum. 83(2), 023104 (2012).
[CrossRef] [PubMed]

Ye, J.

Yoo, J. Y.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

Yoshioka, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Yuan, J.

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

Yumoto, G.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

Zapata, L. E.

Zhang, D.

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

Zhang, L.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

Zhang, X. H.

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

Zhang, Y.

Zhao, Z.

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

Zheng, Z.

Zhou, Z.

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

Appl. Phys. Lett. (6)

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett. 79(24), 3917 (2001).
[CrossRef]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199 (2002).
[CrossRef]

L. Y. Deng, J. H. Teng, L. Zhang, Q. Y. Wu, H. Liu, X. H. Zhang, and S. J. Chua, “Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure,” Appl. Phys. Lett. 101(1), 011101 (2012).
[CrossRef]

E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86(25), 254102 (2005).
[CrossRef]

Y. Ikebe and R. Shimano, “Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect,” Appl. Phys. Lett. 92(1), 012111 (2008).
[CrossRef]

Z. Lü, D. Zhang, C. Meng, L. Sun, Z. Zhou, Z. Zhao, and J. Yuan, “Polarization-sensitive air-biased-coherent-detection for terahertz wave,” Appl. Phys. Lett. 101(8), 081119 (2012).
[CrossRef]

J. Infrared, Millimeter Terahertz Waves (1)

K. Wiesauer and C. Jördens, “Recent Advances in Birefringence Studies at THz Frequencies,” J. Infrared, Millimeter Terahertz Waves 34(11), 663–681 (2013).
[CrossRef]

J. Infrared, Millimeter, Terahertz Waves (2)

E. Castro-Camus, “Polarization-Resolved Terahertz Time-Domain Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves 33(4), 418–430 (2012).
[CrossRef]

T. Nagashima, M. Tani, and M. Hangyo, “Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing,” J. Infrared, Millimeter, Terahertz Waves 34(11), 740–775 (2013).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Commun. (2)

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4, 1841 (2013).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. Kuwata-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[CrossRef]

T. Kampfrath, K. Tanaka, and K. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[CrossRef]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[CrossRef]

New J. Phys. (1)

S. Winnerl, R. Hubrich, M. Mittendorff, H. Schneider, and M. Helm, “Universal phase relation between longitudinal and transverse fields observed in focused terahertz beams,” New J. Phys. 14(10), 103049 (2012).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. Lett. (3)

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection Rules for Light-Induced Magnetization of a Crystal with Threefold Symmetry: The Case of Antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, “Polarization-Controlled Circular Second-Harmonic Generation from Metal Hole Arrays with Threefold Rotational Symmetry,” Phys. Rev. Lett. 112(13), 135502 (2014).
[CrossRef] [PubMed]

S. Spielman, B. Parks, J. Orenstein, D. T. Nemeth, F. Ludwig, J. Clarke, P. Merchant, and D. J. Lew, “Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ.,” Phys. Rev. Lett. 73(11), 1537–1540 (1994).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Xu, J. Galan, G. Ramian, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz Circular Dichroism Spectroscopy of Biomolecules,” Proc. SPIE 5268, 19–26 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

N. Yasumatsu and S. Watanabe, “Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor,” Rev. Sci. Instrum. 83(2), 023104 (2012).
[CrossRef] [PubMed]

Other (2)

K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, Terahertz Spectroscopy and Imaging (Springer & Heidelberg Berlin, 2013), Chap. 11.

N. Yasumatsu and S. Watanabe, “Development of the terahertz electric-field vector sensing method by using the electro-optic modulator,” in The 61st JSAP Spring Meeting,2014, (Aoyama Gakin Univ., Sagamihara, Japan, 2014), 18p-E17–3P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the EO-sampling method. A zincblende crystal with a (111) surface is used for EO sampling. Green and red arrows in the balloon indicate the directions of the electric field vectors of the THz and probe pulses, respectively.

Fig. 2
Fig. 2

Schematic of the experimental setup. P1, polarizer; PEM, photoelastic modulator; LN crystal, LiNbO3 crystal; PM1 and PM2, parabolic mirrors; EO crystal, (111)-oriented GaP crystal; WP, Wollaston prism; BD, balanced photodetector.

Fig. 3
Fig. 3

The probe-pulse polarization modulation scheme using the PEM. (a) High repetition rate case. The repetition frequency of the laser pulse is 9 times of the PEM modulation frequency. (b) Low repetition rate case. The repetition frequency of the laser pulse is 9/32 times of the PEM modulation frequency. The blue solid lines indicate the phase shift introduced by the PEM. δ0 is defined as the amplitude of the PEM modulation. Red triangles indicate the timings when probe pulses are passed through the PEM. Orange arrows show the probe-pulse polarization directions incident to the EO crystal.

Fig. 4
Fig. 4

THz waveform acquired by the EO-sampling method with probe-polarization modulation. (a) THz waveform without a sample. (b)-(e) THz waveforms transmitted through the WGP. In-plane angle of the WGP: (b) 0°, (c) 90°, (d) 45°, and (e) −45°.

Fig. 5
Fig. 5

Relationship between the orientation of the WGP and the direction of the measured THz electric field vector. The black solid lines indicate that the orientation of the WGP and the direction of the measured THz electric-field vector are the same. (a) The data in the range between ± 100 mrad. (b) The data in the range between ± 5 mrad.

Fig. 6
Fig. 6

(a) Histogram of the direction of the measured THz electric-field vector obtained from one hundred measurements. The accumulation time of each measurement was 660 ms. (b) Accumulation time dependence of the statistical error of the direction of the measured THz electric field. The blue dotted line indicates the statistical error determined by the shot-noise limit of the probe pulse.

Fig. 7
Fig. 7

(a) Transmittance of the WGP ( T , T // ). (b) Extinction ratio of the WGP. Solid (dotted) lines were obtained for a THz wave through the WGP when the in-plane angles were set to 0° and 90° ( ± 45°).

Fig. 8
Fig. 8

Plots of the data analysis. (a) All signals acquired during a measurement. (b) Enlarged figure of Fig. 8(a). (c) Magnified view of Fig. 8(b). THz waves are on (off) in the red (blue) areas. (d) Magnified view of Fig. 8(c). (e) Results after the subtraction of the value of the EO signals acquired in the absence of a THz wave from that of the signals acquired in the presence of a THz wave. (f) Fitting results after reordering of the data in Fig. 8(e). The black line represents the fitting curve.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Ssin( 4πLr n 3 E THz 6 λ )sin(2θ+ϕ) 4πLr n 3 E THz 6 λ sin(2θ+ϕ),
θ(t)= δ 0 sin(2πFt),
S 4πLr n 3 E THz 6 λ sin( 2θ(t)+ϕ )= 4πLr n 3 E THz 6 λ sin( 2 δ 0 sin(2πF(t t 0 ))+ϕ ).
δϕ=1cosβ~ 1 2 β 2 .
Δn= n + n = 2 6 r n 3 E THz ,
e = ± ( cos( ϕ 2 ± π 4 ) sin( ϕ 2 ± π 4 ) ),
E probe,i = E probe ( cosθ sinθ ).
E probe,f =( E X probe,f E Y probe,f ) = E probe R( π 4 )J( π 2 )R( π 4 )R( ϕ 2 + π 4 )J( δ )R( ϕ 2 π 4 )( cosθ sinθ ).
δ= 2πΔnL λ ,
R(α)=( cosα sinα sinα cosα ),
J(δ)=( e iδ/2 0 0 e iδ/2 ),
S= ΔI I = | E X probe,f | 2 | E Y probe,f | 2 | E X probe,f | 2 +| E Y probe,f | 2 =sin( 2πLΔn λ )sin(2θ+ϕ) 4πLr n 3 E THz 6 λ sin(2θ+ϕ),
E s 1 =R(α)TR(α) E r ,
E s 2 =R(α+ξ)TR(αξ) E r .
R(α)TR(α)=[ E s 1 E s 2+ ] [ E r E r + ] 1 ,
E r + =R(ξ) E r E s 2+ =R(ξ) E s 2 .

Metrics