Abstract

Considering the limited pixel number and large pixel size of common display panel, the captured elemental images (EIs) array of high density pixels cannot be reconstructed sufficiently in the display process of integral imaging, because of matched display requirement. To solve this problem, this paper presents a novel approach to improve integral imaging resolution by designing a coded sub-pixel mask on common display panel. Specifically, multi-pixels in the captured EIs are displayed in a pixel in the common display panel with time multiplexing along with the corresponding aperture switched on/off of the coded sub-pixel mask periodically, in which the resolution of the reconstructed image is determined by the coded aperture size of the sub-pixel mask rather than the pixel size of the display panel. Then, the mapping relationship between the displayed pixel and the position of the switched on aperture of the coded sub-pixel mask is established theoretically. Computational reconstruction and optical experimental results show that this method can match the pixel number of the captured EIs with that of the display panel and the resolution of integral imaging can be improved significantly.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–74 (1968).
    [CrossRef]
  2. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
    [CrossRef]
  3. J. S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [CrossRef]
  4. J.-S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).
    [CrossRef]
  5. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
    [CrossRef] [PubMed]
  6. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
    [CrossRef] [PubMed]
  7. D. C. Hwang, J. S. Park, S. C. Kim, D. H. Shin, and E. S. Kim, “Magnification of 3d reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45, 4631–4637 (2006).
    [CrossRef] [PubMed]
  8. X. Wang and H. Hua, “Theoretical analysis for integral imaging performance based on microscanning of a microlens array,” Opt. Lett. 33, 449–451 (2008).
    [CrossRef] [PubMed]
  9. J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12, 557–563 (2004).
    [CrossRef] [PubMed]
  10. L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method for high resolution infrared imaging,” Infrared Laser Eng. 40, 2065–2070 (2011).
  11. L. Xiao, K. Liu, D. Han, and J. Liu, “A compressed sensing approach for enhancing infrared imaging resolution,” Opt. Laser Technol. 44, 2354–2360 (2012).
    [CrossRef]
  12. S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, 71–74 (2005).
    [CrossRef]

2012 (1)

L. Xiao, K. Liu, D. Han, and J. Liu, “A compressed sensing approach for enhancing infrared imaging resolution,” Opt. Laser Technol. 44, 2354–2360 (2012).
[CrossRef]

2011 (1)

L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method for high resolution infrared imaging,” Infrared Laser Eng. 40, 2065–2070 (2011).

2008 (1)

2007 (2)

2006 (1)

2005 (1)

S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, 71–74 (2005).
[CrossRef]

2004 (1)

2002 (2)

1998 (1)

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

1968 (1)

Burckhardt, C. B.

Choi, H.

Dohi, T.

Han, D.

L. Xiao, K. Liu, D. Han, and J. Liu, “A compressed sensing approach for enhancing infrared imaging resolution,” Opt. Laser Technol. 44, 2354–2360 (2012).
[CrossRef]

L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method for high resolution infrared imaging,” Infrared Laser Eng. 40, 2065–2070 (2011).

Hoshino, H.

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

Hua, H.

Hwang, D. C.

Isono, H.

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

Iwahara, M.

Jang, J. S.

Jang, J.-S.

Javidi, B.

Jung, J.-H.

Kang, J.-M.

Kim, E. S.

Kim, J.

Kim, S. C.

Kim, Y.

Lee, B.

Liao, H.

Liu, J.

L. Xiao, K. Liu, D. Han, and J. Liu, “A compressed sensing approach for enhancing infrared imaging resolution,” Opt. Laser Technol. 44, 2354–2360 (2012).
[CrossRef]

L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method for high resolution infrared imaging,” Infrared Laser Eng. 40, 2065–2070 (2011).

Liu, K.

L. Xiao, K. Liu, D. Han, and J. Liu, “A compressed sensing approach for enhancing infrared imaging resolution,” Opt. Laser Technol. 44, 2354–2360 (2012).
[CrossRef]

L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method for high resolution infrared imaging,” Infrared Laser Eng. 40, 2065–2070 (2011).

Min, S. W.

S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, 71–74 (2005).
[CrossRef]

Oh, Y.-S.

Okano, F.

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

Park, J. S.

Shin, D. H.

Wang, X.

Xiao, L.

L. Xiao, K. Liu, D. Han, and J. Liu, “A compressed sensing approach for enhancing infrared imaging resolution,” Opt. Laser Technol. 44, 2354–2360 (2012).
[CrossRef]

L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method for high resolution infrared imaging,” Infrared Laser Eng. 40, 2065–2070 (2011).

Yuyama, I.

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

Appl. Opt. (1)

Infrared Laser Eng. (1)

L. Xiao, K. Liu, D. Han, and J. Liu, “Focal plane coding method for high resolution infrared imaging,” Infrared Laser Eng. 40, 2065–2070 (2011).

J. Opt. Soc. Am. (2)

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–74 (1968).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, 71–74 (2005).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

L. Xiao, K. Liu, D. Han, and J. Liu, “A compressed sensing approach for enhancing infrared imaging resolution,” Opt. Laser Technol. 44, 2354–2360 (2012).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Principle of integral imaging.

Fig. 2
Fig. 2

(a) Nine pixels in EIs displayed in one pixel in the common display panel; (b) Regular arrangement of the RGB sub-pixels in the display panel; (c) Sub-pixels arrangement corresponding to (a).

Fig. 3
Fig. 3

Sub-pixel coding in the display panel.

Fig. 4
Fig. 4

(a) Captured EIs; (b) a new image displayed on the display panel at t1.

Fig. 5
Fig. 5

Nine new images which are formed by pixels selected from the corresponding position in Fig. 4(a).

Fig. 6
Fig. 6

(a) Coded sub-pixel mask for each R, G or B sub-pixel; (b) (i) Different sub-pixel coding modes corresponding to a single pixel at different times, respectively.

Fig. 7
Fig. 7

Test plane image.

Fig. 8
Fig. 8

Reconstructed images for different coded sub-pixel masks with a : (a) 1 × 1; (b) 2 × 2; (c) 3 × 3 and (d) 4 × 4 mask sub-array for each sub-pixel, respectively.

Fig. 9
Fig. 9

Resolution enhanced results for the reconstructed image based on our proposed method.

Fig. 10
Fig. 10

Optical experimental setup.

Fig. 11
Fig. 11

Optical reconstruction results for different coded sub-pixel masks: (a) 1 × 1; (b) 2 × 2; (c) 3 × 3.

Fig. 12
Fig. 12

Optical reconstruction results for different coded sub-pixel masks: (a) 1 × 1; (b) 2 × 2; (c) 3 × 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ M ele = n × M N ele = n × N
I u , v = I ele ( u + ( i 1 ) n , v + ( j 1 ) n )
m = ( u 1 ) n + v
R I = g l P X

Metrics