Abstract

Here a reliable fabrication process enabling the integration of multiple functions in a single rod with one optical nano/microfiber (ONM) was proposed, which represents a further step in the “lab-on-a-rod” technology roadmap. With a unique 3D geometry, the all-fiber in-line devices based on lab-on-a-rod techniques have more freedom and potential for compactness and functionality than conventional fiber devices. With the hybrid polymer–metal–dielectric nanostructure, the coupling between the plasmonic and waveguide modes leads to hybridization of the fundamental mode and polarization-dependent loss. By functionalizing the rod surface with a nanoscale silver film and tuning the coil geometry, a broadband polarizer and single-polarization resonator, respectively, were demonstrated. The polarizer has an extinction ratio of more than 20 dB over a spectral range of 450 nm. The resonator has a Q factor of more than 78,000 with excellent suppression of polarization noise. This type of miniature single-polarization resonator is impossible to realize by conventional fabrication processes and has wide applications in fiber communication, lasing, and especially sensing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
    [CrossRef]
  2. D. A. Nolan, G. E. Berkey, M. J. Li, X. Chen, W. A. Wood, and L. A. Zenteno, “Single-polarization fiber with a high extinction ratio,” Opt. Lett. 29(16), 1855–1857 (2004).
    [CrossRef] [PubMed]
  3. R. B. Dyott, J. Bello, and V. A. Handerek, “Indium-coated D-shaped-fiber polarizer,” Opt. Lett. 12(4), 287–289 (1987).
    [CrossRef] [PubMed]
  4. K. Thyagarajan, S. Diggavi, A. K. Ghatak, W. Johnstone, G. Stewart, and B. Culshaw, “Thin-metal-clad waveguide polarizers: analysis and comparison with experiment,” Opt. Lett. 15(18), 1041–1043 (1990).
    [CrossRef] [PubMed]
  5. S. M. Tseng, S. P. Ma, K. F. Chen, and K. Y. Hsu, “Method for preparing fiber-optic polarizer,” US Patent 5,781,675 (1998).
  6. R. B. Dyott, R. Ulrich, and J. D. Meyer, “Optical fiber polarizer,” US Patent 4,589,728, (1986).
  7. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
    [CrossRef]
  8. Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
    [CrossRef] [PubMed]
  9. J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure,” Opt. Express 20(27), 28431–28436 (2012).
    [CrossRef] [PubMed]
  10. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
    [CrossRef] [PubMed]
  11. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  12. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2(8), 496–500 (2008).
    [CrossRef]
  13. R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7(3), 350–384 (2013).
    [CrossRef]
  14. X. Guo, Y. Li, X. Jiang, and L. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91, 073512 (2007).
  15. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [CrossRef]

2013 (1)

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7(3), 350–384 (2013).
[CrossRef]

2012 (2)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure,” Opt. Express 20(27), 28431–28436 (2012).
[CrossRef] [PubMed]

2011 (2)

Y. Chen, F. Xu, and Y. Q. Lu, “Teflon-coated microfiber resonator with weak temperature dependence,” Opt. Express 19(23), 22923–22928 (2011).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

2008 (1)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2(8), 496–500 (2008).
[CrossRef]

2007 (1)

X. Guo, Y. Li, X. Jiang, and L. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91, 073512 (2007).

2004 (1)

1990 (1)

1987 (1)

1983 (1)

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[CrossRef]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

Belal, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7(3), 350–384 (2013).
[CrossRef]

Bello, J.

Berkey, G. E.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Brambilla, G.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7(3), 350–384 (2013).
[CrossRef]

Chen, X.

Chen, Y.

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Consales, M.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Crescitelli, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Culshaw, B.

Cusano, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Cutolo, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Diggavi, S.

Ding, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7(3), 350–384 (2013).
[CrossRef]

Dyott, R. B.

Esposito, E.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Genov, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2(8), 496–500 (2008).
[CrossRef]

Ghatak, A. K.

Guo, X.

X. Guo, Y. Li, X. Jiang, and L. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91, 073512 (2007).

Handerek, V. A.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Howard, R.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[CrossRef]

Ismaeel, R.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7(3), 350–384 (2013).
[CrossRef]

Jiang, X.

X. Guo, Y. Li, X. Jiang, and L. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91, 073512 (2007).

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnstone, W.

Kou, J. L.

Lee, T.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7(3), 350–384 (2013).
[CrossRef]

Li, M. J.

Li, Y.

X. Guo, Y. Li, X. Jiang, and L. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91, 073512 (2007).

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

Lu, Y. Q.

MacChesney, J.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[CrossRef]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

Nolan, D. A.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2(8), 496–500 (2008).
[CrossRef]

Pile, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2(8), 496–500 (2008).
[CrossRef]

Pleibel, W.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[CrossRef]

Ricciardi, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Sears, F.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[CrossRef]

Simpson, J.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2(8), 496–500 (2008).
[CrossRef]

Stewart, G.

Stolen, R.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[CrossRef]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

Thyagarajan, K.

Tong, L.

X. Guo, Y. Li, X. Jiang, and L. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91, 073512 (2007).

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

Wood, W. A.

Xu, F.

Zenteno, L. A.

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2(8), 496–500 (2008).
[CrossRef]

ACS Nano (1)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

X. Guo, Y. Li, X. Jiang, and L. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Appl. Phys. Lett. 91, 073512 (2007).

J. Lightwave Technol. (1)

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[CrossRef]

Laser Photon. Rev. (1)

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photon. Rev. 7(3), 350–384 (2013).
[CrossRef]

Nat. Photon. (2)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photon. 5(7), 411–415 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2(8), 496–500 (2008).
[CrossRef]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Other (2)

S. M. Tseng, S. P. Ma, K. F. Chen, and K. Y. Hsu, “Method for preparing fiber-optic polarizer,” US Patent 5,781,675 (1998).

R. B. Dyott, R. Ulrich, and J. D. Meyer, “Optical fiber polarizer,” US Patent 4,589,728, (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of ONM lab-on-a-rod device. The rod surface is functionalized using nanostructure. The pitches between adjacent turns can be tuned for coupling or decoupling. Multifunction integration can be realized by modifying the rod surface and turn pitches. In our experiment, the PMMA (red) rod is coated with Teflon (white) and silver (yellow) films.

Fig. 2
Fig. 2

Cross section and electric field distribution of hybrid plasmonic waveguide structure. Refractive indices of different materials are labeled in the figure. Red arrow indicates a thickness of 100 nm. The field is calculated at a wavelength of 1550 nm with the following parameters: rONM = 1.5 µm, nair = 1, nteflon = 1.31, nsilica = 1.4443, εsilver = −126 + 3.2i [11]. Inset: electric field distribution of the x polarization mode (TE mode).

Fig. 3
Fig. 3

Theoretical propagation loss for TE and TM modes versus metal thickness, ONM radius, and light wavelength. (a) Theoretical loss for TE and TM modes versus metal thickness and ONM radius at fixed light wavelength, λ = 1550 nm. (b) Theoretical propagation loss for TE and TM modes versus wavelength with varying radius, r = 1 µm, 1.5 µm, and 2 µm. Silver membrane thickness fixed at d = 100 nm.

Fig. 4
Fig. 4

Broadband polarizing. (a) Polarization measurements conducted at wavelengths of 1200–1650 nm (LONM = 12.5 mm). The output maximum (red area) and minimum (black area) were recorded at polarization angles ɵ = 90° (TE mode) and ɵ = 0° (TM mode). Blue and cyan lines indicate ONMs wrapped on Teflon-coated rod, which show no polarizing effect. Inset: Optical microscopic picture of the sample and the scale bar is 100μm. (b) Polar image measured at 1400 nm.

Fig. 5
Fig. 5

Single-polarization single-mode resonator. (a) Transmission spectrum of a coil resonator as recorded from an optical spectrum analyzer. (b) Transmission spectrum around 1550 nm. Inset: The difference between TE mode and TM modes. (c) The output spectrum of TE mode and TE + TM mode, which is obtained from (b). (d) Optical image of sample, the scale bar is 20µm. The two turns of the MF were almost touching each other and formed a resonator.

Metrics