Abstract

The convergence of optical metro networks and access networks extends the area of network coverage, and therefore requires the use of optical amplifiers. For this purpose, semiconductor optical amplifiers (SOA) would be attractive, because they are broadband, can be centered between 1250 nm and 1600 nm, and because they are cheap in production and operation. We show that signals encoded with advanced modulation formats such as BPSK, QPSK, 8PSK, and 16QAM can be amplified by a cascade of at least four SOAs. This enables high-capacity paths with a capacity in the order of Tbit/s for converged metro-access networks.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004).
    [CrossRef]
  2. H. Schmuck, R. Bonk, W. Poehlmann, C. Haslach, W. Kuebart, D. Karnick, J. Meyer, D. Fritzsche, E. Weis, J. Becker, W. Freude, and Th. Pfeiffer, “Demonstration of an SOA-assisted open metro-access infrastructure for heterogeneous services,” Opt. Express 22(1), 737–748 (2014).
    [CrossRef] [PubMed]
  3. S. Koenig, R. Bonk, R. M. Schmogrow, A. Josten, D. Karnick, H. Schmuck, W. Poehlmann, Th. Pfeiffer, C. Koos, W. Freude, and J. Leuthold, “Cascade of 4 SOAs with 448 Gbit/s (224 Gbit/s) dual channel dual polarization 16QAM (QPSK) for high-capacity business paths in converged metro-access Networks,” Optical Fiber Communication Conference (OFC), Anaheim (CA), USA, (2013), paper OTh4A.3.
    [CrossRef]
  4. Th. Pfeiffer, “New avenues of revenues - Open access and infrastructure virtualization,” Optical Fiber Communication Conference (OFC), Los Angeles (CA), USA, (2012), paper NTh4E.1, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6476310 .
    [CrossRef]
  5. J. Leuthold, R. Ryf, D. N. Maywar, S. Cabot, J. Jaques, and S. S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
    [CrossRef]
  6. J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 891–900 (2007).
    [CrossRef]
  7. G. Contestabile, “All optical processing in QD-SOAs,” Optical Fiber Communication Conference (OFC), San Francisco (CA), USA (2014), paper W4F.6.
    [CrossRef]
  8. W. Freude, R. Bonk, T. Vallaitis, A. Marculescu, A. Kapoor, E. K. Sharma, C. Meuer, D. Bimberg, R. Brenot, F. Lelarge, G.-H. Duan, C. Koos, and J. Leuthold, “Linear and nonlinear semiconductor optical amplifiers,” 12th International Conference on Transparent Optical Networks (ICTON), Munich, Germany, (2010), paper We.D4.1.
  9. J. Leuthold, R. Bonk, T. Vallaitis, A. Marculescu, W. Freude, C. Meuer, D. Bimberg, R. Brenot, F. Lelarge, and G.-H. Duan, “Linear and nonlinear semiconductor optical amplifiers,” Optical Fiber Communication Conference (OFC), San Diego (CA), USA, (2010), paper OThI3.
    [CrossRef]
  10. Th. Pfeiffer, “Converged heterogeneous optical metro-access networks,” 36th European Conference on Optical Communication (ECOC), Torino, Italy, (2010), paper Tu.5.B.1.
    [CrossRef]
  11. R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
    [CrossRef]
  12. R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30(15), 1233–1235 (1994).
    [CrossRef]
  13. D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10(9), 1241–1243 (1998).
    [CrossRef]
  14. D. A. Francis, S. P. DiJaili, and J. D. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America,2001), paper PD13, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2001-PD13 .
  15. C. Michie, A. E. Kelly, I. Armstrong, I. Andonovic, and C. Tombling, “An adjustable gain-clamped semiconductor optical amplifier (AGC-SOA),” J. Lightwave Technol. 25(6), 1466–1473 (2007),.
    [CrossRef]
  16. H. N. Tan, M. Matsuura, and N. Kishi, “Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect,” J. Lightwave Technol. 28(17), 2593–2602 (2010).
    [CrossRef]
  17. J. Yu and P. Jeppesen, “Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter,” J. Lightwave Technol. 19(9), 1316–1325 (2001).
    [CrossRef]
  18. J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22(1), 186–192 (2004).
    [CrossRef]
  19. M. Sauer and J. Hurley, “Experimental 43 Gb/s NRZ and DPSK performance comparison for systems with up to 8 concatenated SOAs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThY2, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CThY2 .
    [CrossRef]
  20. E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
    [CrossRef]
  21. J. D. Downie and J. Hurley, “Effects of dispersion on SOA nonlinear impairments with DPSK signals,” in Proc. of 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS2008, paper WX3.
    [CrossRef]
  22. P. S. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. B. Khurgin, “Investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2004), paper MF70, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2004-MF70 .
  23. X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).
  24. H. Takeda, N. Hashimoto, T. Akashi, H. Narusawa, K. Matsui, K. Mori, S. Tanaka, and K. Morito, “Wide range over 20 dB output power control using semiconductor optical amplifier for 43.1 Gbps RZ-DQPSK signal,” 35th European Conference on Optical Communication (ECOC2009), paper 5.3.4, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5287100&isnumber=5286960 .
  25. T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010), doi:.
    [CrossRef] [PubMed]
  26. R. Bonk, G. Huber, T. Vallaitis, S. Koenig, R. Schmogrow, D. Hillerkuss, R. Brenot, F. Lelarge, G. H. Duan, S. Sygletos, C. Koos, W. Freude, and J. Leuthold, “Linear semiconductor optical amplifiers for amplification of advanced modulation formats,” Opt. Express 20(9), 9657–9672 (2012).
    [CrossRef] [PubMed]
  27. R. Bonk, G. Huber, T. Vallaitis, R. Schmogrow, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Impact of alfa-factor on SOA dynamic range for 20 GBd BPSK, QPSK and 16-QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2011), paper OML4, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OML4 .
    [CrossRef]
  28. N. Kamitani, Y. Yoshida, and K. Kitayama, “Experimental Study on Impact of SOA Nonlinear Phase Noise in 40Gbps Coherent 16QAM Transmissions,” European Conference and Exhibition on Optical Communication (ECOC), Amsterdam, (2012), paper P1.04.
    [CrossRef]
  29. S. Lange, G. Contestabile, Y. Yoshida, and K. Kitayama, “Phase-transparent Amplification of 16 QAM Signals in a QD-SOA,” IEEE Photon. Technol. Lett. 25(24), 2486–2489 (2013).
    [CrossRef]
  30. S. Lange, Y. Yoshida, and K. Kitayama, “A Low-complexity Digital Pre-compensation of SOA Induced Phase Distortion in Coherent QAM Transmissions,” Optical Fiber Communication Conference (OFC), Anaheim, California, (2013), paper OTh3C.7, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6532893 .
    [CrossRef]
  31. S. Amiralizadeh, A. T. Nguyen, P. Chul Soo, A. Ghazisaeidi, and L. A. Rusch, “Experimental validation of digital filter back-propagation to suppress SOA-induced nonlinearities in 16-QAM,” Optical Fiber Communication Conference (OFC), (2013), paper OM2B.2, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6532738 .
    [CrossRef]
  32. L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
    [CrossRef]
  33. N. Antoniades, K. C. Reichmann, P. P. Iannone, and A. M. Levine, “Engineering methodology for the use of SOAs and CWDM transmission in the metro network environment,” Optical Fiber Communication Conference (OFC), Anaheim (CA), USA, 2006, paper OTuG6, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OTuG6 .
    [CrossRef]
  34. S. Liu, K. A. Williams, T. Lin, M. G. Thompson, C. K. Yow, A. Wonfor, R. V. Penty, I. H. White, F. Hopfer, M. Lämmlin, and D. Bimberg, “Cascaded performance of quantum dot semiconductor optical amplifier in a recirculating loop,” Conference on Lasers and Electro-Optics (CLEO) and on Quantum Electronics and Laser Science (QELS), 2006, paper CTuM4, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4628243&tag=1 .
    [CrossRef]
  35. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
    [CrossRef]
  36. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012). (Correction: ibid. 24, 2198 (2012)).

2014 (1)

2013 (1)

S. Lange, G. Contestabile, Y. Yoshida, and K. Kitayama, “Phase-transparent Amplification of 16 QAM Signals in a QD-SOA,” IEEE Photon. Technol. Lett. 25(24), 2486–2489 (2013).
[CrossRef]

2012 (1)

2011 (1)

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

2010 (3)

2008 (1)

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[CrossRef]

2007 (2)

2004 (2)

2003 (1)

2001 (1)

2000 (1)

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

1998 (2)

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10(9), 1241–1243 (1998).
[CrossRef]

1994 (1)

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30(15), 1233–1235 (1994).
[CrossRef]

Andonovic, I.

Armstrong, I.

Becker, J.

H. Schmuck, R. Bonk, W. Poehlmann, C. Haslach, W. Kuebart, D. Karnick, J. Meyer, D. Fritzsche, E. Weis, J. Becker, W. Freude, and Th. Pfeiffer, “Demonstration of an SOA-assisted open metro-access infrastructure for heterogeneous services,” Opt. Express 22(1), 737–748 (2014).
[CrossRef] [PubMed]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Bimberg, D.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

Binsma, J. J. M.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Bonk, R.

Brenot, R.

Cabot, S.

Chandrasekhar, S.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Ciaramella, E.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[CrossRef]

Contestabile, G.

S. Lange, G. Contestabile, Y. Yoshida, and K. Kitayama, “Phase-transparent Amplification of 16 QAM Signals in a QD-SOA,” IEEE Photon. Technol. Lett. 25(24), 2486–2489 (2013).
[CrossRef]

D’Errico, A.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[CrossRef]

Danielsen, S. L.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10(9), 1241–1243 (1998).
[CrossRef]

Davies, D. A. O.

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30(15), 1233–1235 (1994).
[CrossRef]

Donzella, V.

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[CrossRef]

Dreschmann, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Duan, G. H.

Duan, G.-H.

Freude, W.

H. Schmuck, R. Bonk, W. Poehlmann, C. Haslach, W. Kuebart, D. Karnick, J. Meyer, D. Fritzsche, E. Weis, J. Becker, W. Freude, and Th. Pfeiffer, “Demonstration of an SOA-assisted open metro-access infrastructure for heterogeneous services,” Opt. Express 22(1), 737–748 (2014).
[CrossRef] [PubMed]

R. Bonk, G. Huber, T. Vallaitis, S. Koenig, R. Schmogrow, D. Hillerkuss, R. Brenot, F. Lelarge, G. H. Duan, S. Sygletos, C. Koos, W. Freude, and J. Leuthold, “Linear semiconductor optical amplifiers for amplification of advanced modulation formats,” Opt. Express 20(9), 9657–9672 (2012).
[CrossRef] [PubMed]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010), doi:.
[CrossRef] [PubMed]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 891–900 (2007).
[CrossRef]

Fritzsche, D.

Garrett, L. D.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Giles, C. R.

Gnauck, A. H.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Guetlein, J.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010), doi:.
[CrossRef] [PubMed]

Haslach, C.

Hillerkuss, D.

Huber, G.

Huebner, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Jaques, J.

Jaques, J. J.

Jeppesen, P.

Joergensen, C.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10(9), 1241–1243 (1998).
[CrossRef]

Karnick, D.

Kelly, A. E.

Kishi, N.

Kitayama, K.

S. Lange, G. Contestabile, Y. Yoshida, and K. Kitayama, “Phase-transparent Amplification of 16 QAM Signals in a QD-SOA,” IEEE Photon. Technol. Lett. 25(24), 2486–2489 (2013).
[CrossRef]

Koenig, S.

Koos, C.

R. Bonk, G. Huber, T. Vallaitis, S. Koenig, R. Schmogrow, D. Hillerkuss, R. Brenot, F. Lelarge, G. H. Duan, S. Sygletos, C. Koos, W. Freude, and J. Leuthold, “Linear semiconductor optical amplifiers for amplification of advanced modulation formats,” Opt. Express 20(9), 9657–9672 (2012).
[CrossRef] [PubMed]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Kuebart, W.

Lange, S.

S. Lange, G. Contestabile, Y. Yoshida, and K. Kitayama, “Phase-transparent Amplification of 16 QAM Signals in a QD-SOA,” IEEE Photon. Technol. Lett. 25(24), 2486–2489 (2013).
[CrossRef]

Lelarge, F.

Leuthold, J.

R. Bonk, G. Huber, T. Vallaitis, S. Koenig, R. Schmogrow, D. Hillerkuss, R. Brenot, F. Lelarge, G. H. Duan, S. Sygletos, C. Koos, W. Freude, and J. Leuthold, “Linear semiconductor optical amplifiers for amplification of advanced modulation formats,” Opt. Express 20(9), 9657–9672 (2012).
[CrossRef] [PubMed]

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G.-H. Duan, W. Freude, and J. Leuthold, “Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals,” Opt. Express 18(6), 6270–6276 (2010), doi:.
[CrossRef] [PubMed]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 891–900 (2007).
[CrossRef]

J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22(1), 186–192 (2004).
[CrossRef]

J. Leuthold, R. Ryf, D. N. Maywar, S. Cabot, J. Jaques, and S. S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Li, J.

Liu, X.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Lucek, J. K.

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30(15), 1233–1235 (1994).
[CrossRef]

Maitra, A.

Manning, R. J.

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30(15), 1233–1235 (1994).
[CrossRef]

Marom, D. M.

Matsuura, M.

Maywar, D. N.

Meuer, C.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

Meyer, J.

H. Schmuck, R. Bonk, W. Poehlmann, C. Haslach, W. Kuebart, D. Karnick, J. Meyer, D. Fritzsche, E. Weis, J. Becker, W. Freude, and Th. Pfeiffer, “Demonstration of an SOA-assisted open metro-access infrastructure for heterogeneous services,” Opt. Express 22(1), 737–748 (2014).
[CrossRef] [PubMed]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Michie, C.

Mikkelsen, B.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10(9), 1241–1243 (1998).
[CrossRef]

Nebendahl, B.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Patel, S. S.

Pfeiffer, Th.

Poehlmann, W.

Poulton, C. G.

Ryf, R.

Sander-Jochem, M. J. H.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Schmeckebier, H.

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

Schmogrow, R.

R. Bonk, G. Huber, T. Vallaitis, S. Koenig, R. Schmogrow, D. Hillerkuss, R. Brenot, F. Lelarge, G. H. Duan, S. Sygletos, C. Koos, W. Freude, and J. Leuthold, “Linear semiconductor optical amplifiers for amplification of advanced modulation formats,” Opt. Express 20(9), 9657–9672 (2012).
[CrossRef] [PubMed]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Schmuck, H.

Spiekman, L. H.

D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004).
[CrossRef]

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Stubkjaer, K. E.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10(9), 1241–1243 (1998).
[CrossRef]

Su, Y.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Sygletos, S.

Tan, H. N.

Tombling, C.

Vallaitis, T.

Van den Hoven, G. N.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Van Dongen, T.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Wang, J.

Wei, X.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

Weis, E.

Wiesenfeld, J. M.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Winter, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Wolfson, D.

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10(9), 1241–1243 (1998).
[CrossRef]

Yoshida, Y.

S. Lange, G. Contestabile, Y. Yoshida, and K. Kitayama, “Phase-transparent Amplification of 16 QAM Signals in a QD-SOA,” IEEE Photon. Technol. Lett. 25(24), 2486–2489 (2013).
[CrossRef]

Yu, J.

Zimmerman, D. R.

Electron. Lett. (1)

R. J. Manning, D. A. O. Davies, and J. K. Lucek, “Recovery rates in semiconductor laser amplifiers: optical and electrical bias dependencies,” Electron. Lett. 30(15), 1233–1235 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

S. Lange, G. Contestabile, Y. Yoshida, and K. Kitayama, “Phase-transparent Amplification of 16 QAM Signals in a QD-SOA,” IEEE Photon. Technol. Lett. 25(24), 2486–2489 (2013).
[CrossRef]

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16, 1582–1584 (1998).

D. Wolfson, S. L. Danielsen, C. Joergensen, B. Mikkelsen, and K. E. Stubkjaer, “Detailed theoretical investigation of the input power dynamic range for gain-clamped semiconductor optical amplifier gates at 10 Gb/s,” IEEE Photon. Technol. Lett. 10(9), 1241–1243 (1998).
[CrossRef]

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. Van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

IEEE Photonics J. (1)

R. Bonk, T. Vallaitis, J. Guetlein, C. Meuer, H. Schmeckebier, D. Bimberg, C. Koos, W. Freude, and J. Leuthold, “The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications,” IEEE Photonics J. 3(6), 1039–1053 (2011).
[CrossRef]

J. Lightwave Technol. (7)

H. N. Tan, M. Matsuura, and N. Kishi, “Enhancement of input power dynamic range for multiwavelength amplification and optical signal processing in a semiconductor optical amplifier using holding beam effect,” J. Lightwave Technol. 28(17), 2593–2602 (2010).
[CrossRef]

J. Yu and P. Jeppesen, “Increasing input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter,” J. Lightwave Technol. 19(9), 1316–1325 (2001).
[CrossRef]

J. Leuthold, R. Ryf, D. N. Maywar, S. Cabot, J. Jaques, and S. S. Patel, “Nonblocking all-optical cross connect based on regenerative all-optical wavelength converter in a transparent demonstration over 42 nodes and 16800 km,” J. Lightwave Technol. 21(11), 2863–2870 (2003).
[CrossRef]

J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, “All-optical wavelength conversion using a pulse reformatting optical filter,” J. Lightwave Technol. 22(1), 186–192 (2004).
[CrossRef]

D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004).
[CrossRef]

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 891–900 (2007).
[CrossRef]

C. Michie, A. E. Kelly, I. Armstrong, I. Andonovic, and C. Tombling, “An adjustable gain-clamped semiconductor optical amplifier (AGC-SOA),” J. Lightwave Technol. 25(6), 1466–1473 (2007),.
[CrossRef]

Opt. Express (3)

Other (18)

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett. 24, 61–63 (2012). (Correction: ibid. 24, 2198 (2012)).

N. Antoniades, K. C. Reichmann, P. P. Iannone, and A. M. Levine, “Engineering methodology for the use of SOAs and CWDM transmission in the metro network environment,” Optical Fiber Communication Conference (OFC), Anaheim (CA), USA, 2006, paper OTuG6, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OTuG6 .
[CrossRef]

S. Liu, K. A. Williams, T. Lin, M. G. Thompson, C. K. Yow, A. Wonfor, R. V. Penty, I. H. White, F. Hopfer, M. Lämmlin, and D. Bimberg, “Cascaded performance of quantum dot semiconductor optical amplifier in a recirculating loop,” Conference on Lasers and Electro-Optics (CLEO) and on Quantum Electronics and Laser Science (QELS), 2006, paper CTuM4, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4628243&tag=1 .
[CrossRef]

D. A. Francis, S. P. DiJaili, and J. D. Walker, “A single-chip linear optical amplifier,” in Optical Fiber Communication Conference, 2001 OSA Technical Digest Series (Optical Society of America,2001), paper PD13, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2001-PD13 .

S. Koenig, R. Bonk, R. M. Schmogrow, A. Josten, D. Karnick, H. Schmuck, W. Poehlmann, Th. Pfeiffer, C. Koos, W. Freude, and J. Leuthold, “Cascade of 4 SOAs with 448 Gbit/s (224 Gbit/s) dual channel dual polarization 16QAM (QPSK) for high-capacity business paths in converged metro-access Networks,” Optical Fiber Communication Conference (OFC), Anaheim (CA), USA, (2013), paper OTh4A.3.
[CrossRef]

Th. Pfeiffer, “New avenues of revenues - Open access and infrastructure virtualization,” Optical Fiber Communication Conference (OFC), Los Angeles (CA), USA, (2012), paper NTh4E.1, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6476310 .
[CrossRef]

M. Sauer and J. Hurley, “Experimental 43 Gb/s NRZ and DPSK performance comparison for systems with up to 8 concatenated SOAs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThY2, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2006-CThY2 .
[CrossRef]

G. Contestabile, “All optical processing in QD-SOAs,” Optical Fiber Communication Conference (OFC), San Francisco (CA), USA (2014), paper W4F.6.
[CrossRef]

W. Freude, R. Bonk, T. Vallaitis, A. Marculescu, A. Kapoor, E. K. Sharma, C. Meuer, D. Bimberg, R. Brenot, F. Lelarge, G.-H. Duan, C. Koos, and J. Leuthold, “Linear and nonlinear semiconductor optical amplifiers,” 12th International Conference on Transparent Optical Networks (ICTON), Munich, Germany, (2010), paper We.D4.1.

J. Leuthold, R. Bonk, T. Vallaitis, A. Marculescu, W. Freude, C. Meuer, D. Bimberg, R. Brenot, F. Lelarge, and G.-H. Duan, “Linear and nonlinear semiconductor optical amplifiers,” Optical Fiber Communication Conference (OFC), San Diego (CA), USA, (2010), paper OThI3.
[CrossRef]

Th. Pfeiffer, “Converged heterogeneous optical metro-access networks,” 36th European Conference on Optical Communication (ECOC), Torino, Italy, (2010), paper Tu.5.B.1.
[CrossRef]

H. Takeda, N. Hashimoto, T. Akashi, H. Narusawa, K. Matsui, K. Mori, S. Tanaka, and K. Morito, “Wide range over 20 dB output power control using semiconductor optical amplifier for 43.1 Gbps RZ-DQPSK signal,” 35th European Conference on Optical Communication (ECOC2009), paper 5.3.4, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5287100&isnumber=5286960 .

R. Bonk, G. Huber, T. Vallaitis, R. Schmogrow, D. Hillerkuss, C. Koos, W. Freude, and J. Leuthold, “Impact of alfa-factor on SOA dynamic range for 20 GBd BPSK, QPSK and 16-QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2011), paper OML4, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OML4 .
[CrossRef]

N. Kamitani, Y. Yoshida, and K. Kitayama, “Experimental Study on Impact of SOA Nonlinear Phase Noise in 40Gbps Coherent 16QAM Transmissions,” European Conference and Exhibition on Optical Communication (ECOC), Amsterdam, (2012), paper P1.04.
[CrossRef]

S. Lange, Y. Yoshida, and K. Kitayama, “A Low-complexity Digital Pre-compensation of SOA Induced Phase Distortion in Coherent QAM Transmissions,” Optical Fiber Communication Conference (OFC), Anaheim, California, (2013), paper OTh3C.7, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6532893 .
[CrossRef]

S. Amiralizadeh, A. T. Nguyen, P. Chul Soo, A. Ghazisaeidi, and L. A. Rusch, “Experimental validation of digital filter back-propagation to suppress SOA-induced nonlinearities in 16-QAM,” Optical Fiber Communication Conference (OFC), (2013), paper OM2B.2, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6532738 .
[CrossRef]

J. D. Downie and J. Hurley, “Effects of dispersion on SOA nonlinear impairments with DPSK signals,” in Proc. of 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS2008, paper WX3.
[CrossRef]

P. S. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. B. Khurgin, “Investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America,2004), paper MF70, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2004-MF70 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Converged metro-access ring network scenario. (a) Infrastructures such as fiber-to-the-x (FTTx with x = B, H for building, home), radio backhauling, or high-capacity paths are supported. (b) SOAs along the ring compensate losses in the network so that a cascade of several SOAs results. (c) SOAs may be located in waveband ROADMs which provide data switching every 5 to 20 km. SOA = semiconductor optical amplifier, CWDM = coarse wavelength division multiplexing, ROADM = reconfigurable optical add-drop multiplexer, DCF = dispersion compensating fiber, Mux = multiplexer, Demux = de-multiplexer, MONITOR = monitor tap, OSNR = optical signal-to-noise-ratio.

Fig. 2
Fig. 2

Experimental setup with four cascaded waveband ROADMs to mimic a high-capacity path in a converged metro-access network (see Fig. 1). Identical SOAs in each waveband ROADM amplify the data signal which is then filtered. The total signal power into the first SOA is adjusted by the first VOA. All other VOAs are adjusted such that all SOAs have equal input power for a 0 dB net gain between subsequent SOA inputs.

Fig. 3
Fig. 3

Fiber-to-fiber (FtF) gain and noise figure (NF) of the SOAs used for the cascade experiment. All four SOAs have same characteristics. The 1 dB input saturation power is −4 dBm.

Fig. 4
Fig. 4

(a) Error vector magnitude (EVM) as a function of the SOA input power and definition of the input power dynamic range (IPDR). The IPDR is defined as the ratio of the upper (nonlinearities) and lower (noise) SOA input power limits, inside which the EVM corresponds to a bit error ratio (BER) better than 10−3. The upper and lower IPDR boundaries are indicated by the vertical dashed lines. (b) Relation between EVM and BER for low and large SOA input powers. Actual measured BER values and BER values calculated from EVM measurements assuming AWGN [36] are compared for QPSK.

Fig. 5
Fig. 5

EVM and constellation diagrams for BPSK signals in an SOA cascade. (a) EVM plot for the single λ-channel (filled symbols) single polarization (SP) signal, (b) magnitude error of the signal shown in (a), (c) phase error of the signal shown in (a). (g) Constellation diagrams of the single λ-channel SP constellation signal shown in (a) for different SOA input powers. (d) EVM plot of the dual λ-channel (open symbols) SP signal, (e) EVM plot of the single λ-channel dual polarization (DP, dashed and dash-dotted lines) signal, (f) EVM plot of the dual λ-channel DP signal. The solid horizontal lines indicate the EVM for a BER of 10−3. Horizontal dashed/dash-dotted lines indicate the back-to-back (BtB) performance without SOAs.

Fig. 6
Fig. 6

EVM and constellation diagrams for QPSK signals in an SOA cascade. (a) EVM plot for the single λ-channel (filled symbols) single polarization (SP) signal, (b) magnitude error of the signal shown in (a), (c) phase error of the signal shown in (a). (g) Constellation diagrams of the single λ-channel SP constellation signal shown in (a) for different SOA input powers. (d) EVM plot of the dual λ-channel (open symbols) SP signal, (e) EVM plot of the single λ-channel dual polarization (DP, dashed and dash-dotted lines) signal, (f) EVM plot of the dual λ-channel DP signal. The solid horizontal lines indicate the EVM for a BER of 10−3. Horizontal dashed/dash-dotted lines indicate the back-to-back (BtB) performance without SOAs.

Fig. 7
Fig. 7

EVM and constellation diagrams for 8PSK signals in an SOA cascade. (a) EVM plot for the single λ-channel (filled symbols) single polarization (SP) signal, (b) magnitude error of the signal shown in (a), (c) phase error of the signal shown in (a). (g) Constellation diagrams of the single λ-channel SP constellation signal shown in (a) for different SOA input powers. (d) EVM plot of the dual λ-channel (open symbols) SP signal, (e) EVM plot of the single λ-channel dual polarization (DP, dashed and dash-dotted lines) signal, (f) EVM plot of the dual λ-channel DP signal. The solid horizontal lines indicate the EVM for a BER of 10−3. Horizontal dashed/dash-dotted lines indicate the back-to-back (BtB) performance without SOAs.

Fig. 8
Fig. 8

EVM and constellation diagrams for 16QAM signals in an SOA cascade. (a) EVM plot for the single λ-channel (filled symbols) single polarization (SP) signal, (b) magnitude error of the signal shown in (a), (c) phase error of the signal shown in (a). (g) Constellation diagrams of the single λ-channel SP constellation signal shown in (a) for different SOA input powers. (d) EVM plot of the dual λ-channel (open symbols) SP signal, (e) EVM plot of the single λ-channel dual polarization (DP, dashed and dash-dotted lines) signal, (f) EVM plot of the dual λ-channel DP signal. The solid horizontal lines indicate the EVM for a BER of 10−3. Horizontal dashed/dash-dotted lines indicate the back-to-back (BtB) performance without SOAs.

Fig. 9
Fig. 9

Normalized optical spectra (resolution bandwidth RBW = 0.01 nm) along the SOA cascade for a total SOA input power of −13 dBm, (a) single λ-channel SP-QPSK, (b) dual λ-channel SP-QPSK. (c) Spectrum for dual λ-channel SP-QPSK signal after second SOA and a large total SOA input power of + 2 dBm. Four-wave-mixing products can be seen.

Fig. 10
Fig. 10

Effect of polarization dependent gain (PDG) on SOA cascade. (a) single λ-channel SP-QPSK, (b) single λ-channel SP-16QAM. The upper power limit of the input power dynamic range (IPDR) reduces by 2 to 3 dB, if the polarization is adjusted from minimum to maximum SOA gain.

Fig. 11
Fig. 11

Input power dynamic range (IPDR) as a function of the number of cascaded SOAs for (a) single polarization (SP) signals, (b) polarization 1 of dual polarization (DP) signals, (c) polarization 2 of DP signals. QPSK is a very robust signal. An IPDR of at least 20 dB is obtained after four SOAs. The DP-16QAM signals show some irregularities due to polarization dependent issues.

Fig. 12
Fig. 12

Normalized optical spectra (resolution bandwidth RBW = 0.01 nm) for single λ-channel SP-QPSK along the SOA cascade. (a) Without filter after each SOA, (b) with a 2 nm filter after each SOA. The total SOA input power is −13 dBm.

Fig. 13
Fig. 13

(a) Upper and lower boundary of the input power dynamic range (IPDR) as a function of the number of cascaded SOAs for different filter bandwidths (no filter, 17 nm CWDM filter, 2 nm filter). (b) IPDR as a function of the number of cascaded SOAs. By employing CWDM filters along the SOA cascade, the IPDR after the fourth SOA is increased by 7 dB compared to the case without filter.

Tables (2)

Tables Icon

Table 1 Summary of measured input power dynamic range (IPDR) values for a BER < 10−3 along a cascade of four identical SOAs when using advanced modulation formats, a 0 dB net gain between subsequent SOA inputs, and CWDM filtering after each SOA. The two numbers given for DP signals denote the IPDR of both polarizations. The color grading (see legend below the Table) gives a hint to identify possible operation conditions in the network.

Tables Icon

Table 2 Influence of different filter bandwidths on the input power dynamic range (IPDR) along a cascade of four identical SOAs with single λ-channel SP-QPSK and a 0 dB net gain between subsequent SOA inputs. The use of a CWDM filter gives a 7 dB larger IPDR after four SOAs compared to the case if no filter is used.

Metrics