Abstract

We propose an adaptive channel estimation (CE) method for zero-guard-interval (ZGI) coherent optical (CO)-OFDM systems, and demonstrate its performance in a single channel 28 Gbaud polarization-division multiplexed ZGI CO-OFDM experiment with only 1% OFDM processing overhead. We systematically investigate its robustness against various transmission impairments including residual chromatic dispersion, polarization-mode dispersion, state of polarization rotation, sampling frequency offset and fiber nonlinearity. Both experimental and numerical results show that the adaptive CE-aided ZGI CO-OFDM is highly robust against these transmission impairments in fiber optical transmission systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Netw. 7(3), 234–255 (2008).
    [CrossRef]
  2. W. Shieh, “OFDM for flexible high-speed optical networks,” J. Lightwave Technol. 29(10), 1560–1577 (2011).
    [CrossRef]
  3. S. L. Jansen, I. Morita, T. C. Schenk, and H. Tanaka, “Long-hual transmission of 16×52.5 Gbits/s polarization-division-multiplexed OFDM enabled by MIMO processing (Invited),” J. Opt. Netw. 7(2), 173–182 (2008).
    [CrossRef]
  4. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [CrossRef]
  5. C. Chen, Q. Zhuge, and D. V. Plant, “Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization,” Opt. Express 19(8), 7451–7467 (2011).
    [CrossRef] [PubMed]
  6. Q. Zhuge, M. Morsy-Osman, M. E. Mousa-Pasandi, X. Xu, M. Chagnon, Z. A. El-Sahn, C. Chen, and D. V. Plant, “Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM,” Opt. Express 20(26), B439–B444 (2012).
    [CrossRef]
  7. K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
    [CrossRef]
  8. Q. Zhuge, B. Chatelain, and D. V. Plant, “Comparison of intra-channel nonlinearity tolerance between reduced-guard-interval CO-OFDM systems and nyquist single carrier systems,” in Proc. OFC’12, paper OTh1B.3 (2012).
    [CrossRef]
  9. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [CrossRef] [PubMed]
  10. W. Wang, Q. Zhuge, X. Xu, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. V. Plant, “Nonlinear-tolerant adaptive zero-guard-interval CO-OFDM for highly spectral efficient optical transmission,” in Proc. OFC’14, Paper. Tu3G.3 (2014).
    [CrossRef]
  11. L. B. Du, J. Schroeder, and A. J. Lowery, “Blind subcarrier equalization without pre-filtering for optical OFDM systems,” in Proc. OFC’12, paper OM2H.6 (2012).
    [CrossRef]
  12. J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2007).
  13. S. Haykin, Adaptive Filter Theory (Prentice-Hall, 2002).
  14. Q. Zhuge, C. Chen, and D. V. Plant, “Impact of intra-channel fiber nonlinearity on reduced-guard-interval CO-OFDM transmission,” in Proc. OFC’11, Paper OWO3 (2011).
    [CrossRef]
  15. C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
    [CrossRef]
  16. Q. Zhuge, M. Morsy-Osman, and D. V. Plant, “Low overhead intra-symbol carrier phase recovery for reduced-guard-interval CO-OFDM,” J. Lightwave Technol. 31(8), 1158–1169 (2013).
    [CrossRef]
  17. Q. Zhuge, M. Morsy-Osman, X. Xu, M. Chagnon, Q. Meng, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
    [CrossRef]
  18. B. Spinnler, “Equalizer design and complexity for digital coherent receiver,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010).
    [CrossRef]
  19. M. Sliskovic, “Carrier and sampling frequency offset estimation and correction in multicarrier systems,” in IEEE Global Telecommunications Conference, 2001. GLOBECOM ’01 (IEEE, 2001), Vol.1, pp. 285–289 (2001).
    [CrossRef]

2014

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[CrossRef]

2013

2012

2011

2010

B. Spinnler, “Equalizer design and complexity for digital coherent receiver,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[CrossRef]

2008

Buchali, F.

Chagnon, M.

Chandrasekhar, S.

Chen, C.

Du, L. B.

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[CrossRef]

El-Sahn, Z. A.

Gnauck, A. H.

Han, J. S.

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[CrossRef]

Hyung-Jin, C.

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[CrossRef]

Jansen, S. L.

Liu, X.

Lowery, A. J.

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[CrossRef]

Ma, Y.

Meng, Q.

Morita, I.

Morsy-Osman, M.

Mousa-Pasandi, M. E.

Peckham, D. W.

Plant, D. V.

Schenk, T. C.

Shieh, W.

Sliskovic, M.

M. Sliskovic, “Carrier and sampling frequency offset estimation and correction in multicarrier systems,” in IEEE Global Telecommunications Conference, 2001. GLOBECOM ’01 (IEEE, 2001), Vol.1, pp. 285–289 (2001).
[CrossRef]

Spinnler, B.

B. Spinnler, “Equalizer design and complexity for digital coherent receiver,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

Tanaka, H.

Winzer, P. J.

Won, K. H.

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[CrossRef]

Xu, X.

Yang, Q.

Yi, X.

Zhu, B.

Zhu, C.

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[CrossRef]

Zhuge, Q.

IEEE Photon. Technol. Lett.

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[CrossRef]

IEEE Sel. Top. J. Quantum Electron.

B. Spinnler, “Equalizer design and complexity for digital coherent receiver,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010).
[CrossRef]

J. Lightwave Technol.

J. Networks

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[CrossRef]

J. Opt. Netw.

Opt. Express

Other

W. Wang, Q. Zhuge, X. Xu, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. V. Plant, “Nonlinear-tolerant adaptive zero-guard-interval CO-OFDM for highly spectral efficient optical transmission,” in Proc. OFC’14, Paper. Tu3G.3 (2014).
[CrossRef]

L. B. Du, J. Schroeder, and A. J. Lowery, “Blind subcarrier equalization without pre-filtering for optical OFDM systems,” in Proc. OFC’12, paper OM2H.6 (2012).
[CrossRef]

J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2007).

S. Haykin, Adaptive Filter Theory (Prentice-Hall, 2002).

Q. Zhuge, C. Chen, and D. V. Plant, “Impact of intra-channel fiber nonlinearity on reduced-guard-interval CO-OFDM transmission,” in Proc. OFC’11, Paper OWO3 (2011).
[CrossRef]

M. Sliskovic, “Carrier and sampling frequency offset estimation and correction in multicarrier systems,” in IEEE Global Telecommunications Conference, 2001. GLOBECOM ’01 (IEEE, 2001), Vol.1, pp. 285–289 (2001).
[CrossRef]

Q. Zhuge, B. Chatelain, and D. V. Plant, “Comparison of intra-channel nonlinearity tolerance between reduced-guard-interval CO-OFDM systems and nyquist single carrier systems,” in Proc. OFC’12, paper OTh1B.3 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Frame structure for (a) CON-ZGI and (b) Adaptive-ZGI.

Fig. 2
Fig. 2

Diagram of the major receiver-side DSP for (a) CON-ZGI and (b) Adaptive-ZGI.

Fig. 3
Fig. 3

Illustration of the interplay between training and data symbols due to fiber CD.

Fig. 4
Fig. 4

Q factor distributions of 100 realizations of the two systems.

Fig. 5
Fig. 5

(a) Experimental setup. (ECL: external cavity laser; EDFA: erbium doped fiber amplifier; PBS/PBC: polarization beam splitter/combiner; PC: polarization controller; ODL: optical delay line; OSA: optical spectrum analyzer; VOA: variable optical attenuator; SW: switch.). (b) ZGI OFDM Frame Arrangement.

Fig. 6
Fig. 6

(a) BER vs. OSNR (0.1 nm). (b) Recovered constellations on different subcarriers.

Fig. 7
Fig. 7

(a) Q factor penalty as a function of residual CD. (b) Q factor for each subcarrier with a 3000 ps/nm residual CD.

Fig. 8
Fig. 8

(a) Q vs. launch power. (b) Recovered constellations on different subcarriers. (c) BER vs. transmission distance.

Fig. 9
Fig. 9

The distributions of the received Q factors as a function of <DGD> = 0 ps (upper row), 25 ps (middle row) and 50 ps (lower row) for CON-ZGI (left column) and Adaptive-ZGI (right column) at OSNR = 14 dB.

Fig. 10
Fig. 10

Q factor penalty as a function of the SOP rotation speed (OSNR = 14 dB).

Fig. 11
Fig. 11

Q factor penalty as a function of the SFO estimation error @ standard 200 ppm (OSNR = 14 dB).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H ¯ (k)= 1 L n=1 L H n (k)
H ¯ (k)= 1 min( k max ,k+m)max( k min ,km)+1 k'=km k+m H(k') ,L=2m+1
H coarse (k)=R(k) S + (k)

Metrics