Abstract

We propose an adaptive channel estimation (CE) method for zero-guard-interval (ZGI) coherent optical (CO)-OFDM systems, and demonstrate its performance in a single channel 28 Gbaud polarization-division multiplexed ZGI CO-OFDM experiment with only 1% OFDM processing overhead. We systematically investigate its robustness against various transmission impairments including residual chromatic dispersion, polarization-mode dispersion, state of polarization rotation, sampling frequency offset and fiber nonlinearity. Both experimental and numerical results show that the adaptive CE-aided ZGI CO-OFDM is highly robust against these transmission impairments in fiber optical transmission systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Decision-aided sampling frequency offset compensation for reduced-guard-interval coherent optical OFDM systems

Wei Wang, Qunbi Zhuge, Mohamed Morsy-Osman, Yuliang Gao, Xian Xu, Mathieu Chagnon, Meng Qiu, Minh Thang Hoang, Fangyuan Zhang, Rui Li, and David V. Plant
Opt. Express 22(22) 27553-27564 (2014)

Dispersion-enhanced phase noise effects on reduced-guard-interval CO-OFDM transmission

Qunbi Zhuge, Chen Chen, and David V. Plant
Opt. Express 19(5) 4472-4484 (2011)

Simplified extended Kalman filter phase noise estimation for CO-OFDM transmissions

Tu T. Nguyen, Son T. Le, Marc Wuilpart, Tatiana Yakusheva, and Patrice Mégret
Opt. Express 25(22) 27247-27261 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come? [Invited],” J. Opt. Netw. 7(3), 234–255 (2008).
    [Crossref]
  2. W. Shieh, “OFDM for flexible high-speed optical networks,” J. Lightwave Technol. 29(10), 1560–1577 (2011).
    [Crossref]
  3. S. L. Jansen, I. Morita, T. C. Schenk, and H. Tanaka, “Long-hual transmission of 16×52.5 Gbits/s polarization-division-multiplexed OFDM enabled by MIMO processing (Invited),” J. Opt. Netw. 7(2), 173–182 (2008).
    [Crossref]
  4. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [Crossref]
  5. C. Chen, Q. Zhuge, and D. V. Plant, “Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization,” Opt. Express 19(8), 7451–7467 (2011).
    [Crossref] [PubMed]
  6. Q. Zhuge, M. Morsy-Osman, M. E. Mousa-Pasandi, X. Xu, M. Chagnon, Z. A. El-Sahn, C. Chen, and D. V. Plant, “Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM,” Opt. Express 20(26), B439–B444 (2012).
    [Crossref]
  7. K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
    [Crossref]
  8. Q. Zhuge, B. Chatelain, and D. V. Plant, “Comparison of intra-channel nonlinearity tolerance between reduced-guard-interval CO-OFDM systems and nyquist single carrier systems,” in Proc. OFC’12, paper OTh1B.3 (2012).
    [Crossref]
  9. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [Crossref] [PubMed]
  10. W. Wang, Q. Zhuge, X. Xu, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. V. Plant, “Nonlinear-tolerant adaptive zero-guard-interval CO-OFDM for highly spectral efficient optical transmission,” in Proc. OFC’14, Paper. Tu3G.3 (2014).
    [Crossref]
  11. L. B. Du, J. Schroeder, and A. J. Lowery, “Blind subcarrier equalization without pre-filtering for optical OFDM systems,” in Proc. OFC’12, paper OM2H.6 (2012).
    [Crossref]
  12. J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2007).
  13. S. Haykin, Adaptive Filter Theory (Prentice-Hall, 2002).
  14. Q. Zhuge, C. Chen, and D. V. Plant, “Impact of intra-channel fiber nonlinearity on reduced-guard-interval CO-OFDM transmission,” in Proc. OFC’11, Paper OWO3 (2011).
    [Crossref]
  15. C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
    [Crossref]
  16. Q. Zhuge, M. Morsy-Osman, and D. V. Plant, “Low overhead intra-symbol carrier phase recovery for reduced-guard-interval CO-OFDM,” J. Lightwave Technol. 31(8), 1158–1169 (2013).
    [Crossref]
  17. Q. Zhuge, M. Morsy-Osman, X. Xu, M. Chagnon, Q. Meng, and D. V. Plant, “Spectral efficiency-adaptive optical transmission using time domain hybrid QAM for agile optical networks,” J. Lightwave Technol. 31(15), 2621–2628 (2013).
    [Crossref]
  18. B. Spinnler, “Equalizer design and complexity for digital coherent receiver,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010).
    [Crossref]
  19. M. Sliskovic, “Carrier and sampling frequency offset estimation and correction in multicarrier systems,” in IEEE Global Telecommunications Conference, 2001. GLOBECOM ’01 (IEEE, 2001), Vol.1, pp. 285–289 (2001).
    [Crossref]

2014 (1)

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (3)

2010 (2)

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[Crossref]

B. Spinnler, “Equalizer design and complexity for digital coherent receiver,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010).
[Crossref]

2008 (3)

Buchali, F.

Chagnon, M.

Chandrasekhar, S.

Chen, C.

Du, L. B.

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[Crossref]

El-Sahn, Z. A.

Gnauck, A. H.

Han, J. S.

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[Crossref]

Hyung-Jin, C.

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[Crossref]

Jansen, S. L.

Liu, X.

Lowery, A. J.

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[Crossref]

Ma, Y.

Meng, Q.

Morita, I.

Morsy-Osman, M.

Mousa-Pasandi, M. E.

Peckham, D. W.

Plant, D. V.

Schenk, T. C.

Shieh, W.

Sliskovic, M.

M. Sliskovic, “Carrier and sampling frequency offset estimation and correction in multicarrier systems,” in IEEE Global Telecommunications Conference, 2001. GLOBECOM ’01 (IEEE, 2001), Vol.1, pp. 285–289 (2001).
[Crossref]

Spinnler, B.

B. Spinnler, “Equalizer design and complexity for digital coherent receiver,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010).
[Crossref]

Tanaka, H.

Winzer, P. J.

Won, K. H.

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[Crossref]

Xu, X.

Yang, Q.

Yi, X.

Zhu, B.

Zhu, C.

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[Crossref]

Zhuge, Q.

IEEE Photon. Technol. Lett. (1)

C. Zhu, L. B. Du, and A. J. Lowery, “Training-aided coherent optical single-carrier system with improved nonlinearity tolerance,” IEEE Photon. Technol. Lett. 26(12), 1211–1214 (2014).
[Crossref]

IEEE Sel. Top. J. Quantum Electron. (1)

B. Spinnler, “Equalizer design and complexity for digital coherent receiver,” IEEE Sel. Top. J. Quantum Electron. 16(5), 1180–1192 (2010).
[Crossref]

J. Lightwave Technol. (4)

J. Networks (1)

K. H. Won, J. S. Han, and C. Hyung-Jin, “Sampling frequency offset estimation methods for DVB-T/H systems,” J. Networks 5(3), 313–320 (2010).
[Crossref]

J. Opt. Netw. (2)

Opt. Express (3)

Other (7)

M. Sliskovic, “Carrier and sampling frequency offset estimation and correction in multicarrier systems,” in IEEE Global Telecommunications Conference, 2001. GLOBECOM ’01 (IEEE, 2001), Vol.1, pp. 285–289 (2001).
[Crossref]

Q. Zhuge, B. Chatelain, and D. V. Plant, “Comparison of intra-channel nonlinearity tolerance between reduced-guard-interval CO-OFDM systems and nyquist single carrier systems,” in Proc. OFC’12, paper OTh1B.3 (2012).
[Crossref]

W. Wang, Q. Zhuge, X. Xu, M. Morsy-Osman, M. Chagnon, M. Qiu, and D. V. Plant, “Nonlinear-tolerant adaptive zero-guard-interval CO-OFDM for highly spectral efficient optical transmission,” in Proc. OFC’14, Paper. Tu3G.3 (2014).
[Crossref]

L. B. Du, J. Schroeder, and A. J. Lowery, “Blind subcarrier equalization without pre-filtering for optical OFDM systems,” in Proc. OFC’12, paper OM2H.6 (2012).
[Crossref]

J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2007).

S. Haykin, Adaptive Filter Theory (Prentice-Hall, 2002).

Q. Zhuge, C. Chen, and D. V. Plant, “Impact of intra-channel fiber nonlinearity on reduced-guard-interval CO-OFDM transmission,” in Proc. OFC’11, Paper OWO3 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Frame structure for (a) CON-ZGI and (b) Adaptive-ZGI.

Fig. 2
Fig. 2

Diagram of the major receiver-side DSP for (a) CON-ZGI and (b) Adaptive-ZGI.

Fig. 3
Fig. 3

Illustration of the interplay between training and data symbols due to fiber CD.

Fig. 4
Fig. 4

Q factor distributions of 100 realizations of the two systems.

Fig. 5
Fig. 5

(a) Experimental setup. (ECL: external cavity laser; EDFA: erbium doped fiber amplifier; PBS/PBC: polarization beam splitter/combiner; PC: polarization controller; ODL: optical delay line; OSA: optical spectrum analyzer; VOA: variable optical attenuator; SW: switch.). (b) ZGI OFDM Frame Arrangement.

Fig. 6
Fig. 6

(a) BER vs. OSNR (0.1 nm). (b) Recovered constellations on different subcarriers.

Fig. 7
Fig. 7

(a) Q factor penalty as a function of residual CD. (b) Q factor for each subcarrier with a 3000 ps/nm residual CD.

Fig. 8
Fig. 8

(a) Q vs. launch power. (b) Recovered constellations on different subcarriers. (c) BER vs. transmission distance.

Fig. 9
Fig. 9

The distributions of the received Q factors as a function of <DGD> = 0 ps (upper row), 25 ps (middle row) and 50 ps (lower row) for CON-ZGI (left column) and Adaptive-ZGI (right column) at OSNR = 14 dB.

Fig. 10
Fig. 10

Q factor penalty as a function of the SOP rotation speed (OSNR = 14 dB).

Fig. 11
Fig. 11

Q factor penalty as a function of the SFO estimation error @ standard 200 ppm (OSNR = 14 dB).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H ¯ (k)= 1 L n=1 L H n (k)
H ¯ (k)= 1 min( k max ,k+m)max( k min ,km)+1 k'=km k+m H(k') ,L=2m+1
H coarse (k)=R(k) S + (k)

Metrics