Abstract

Lattices of plasmonic nanorings with particular geometries exhibit singular, tunable resonance features in the infrared. This work examined effects of nanoring inner radius, wall thickness, and lattice constant on the spectral response of single nanorings and in Fano resonant square lattices, combining use of the discrete and coupled dipole approximations. Increasing nanoring inner radius red-shifted and broadened the localized surface plasmon resonance (LSPR), while wall thickness modulated the LSPR wavelength and decreased absorption relative to scattering. The square lattice constant was tuned to observe diffractively-coupled lattice resonances, which increased resonant extinction 4.3-fold over the single-ring LSPR through Fano resonance. Refractive index sensitivities of 760 and 1075 nm RIU−1 were computed for the plasmon and lattice resonances of an optimized nanoring lattice. Sensitivity of an optimal nanoring lattice to a local change in dielectric, useful for sensing applications, was 4 to 5 times higher than for isolated nanorings or non-coupling arrays. This was attributable to the Fano line-shape in far-field diffractive coupling with near-field LSPR.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sensors 10(3), 531–540 (2010).
    [CrossRef]
  2. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [CrossRef] [PubMed]
  3. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  4. J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
    [CrossRef]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  6. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [CrossRef] [PubMed]
  7. D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photonics Res. 2(1), 15–23 (2014).
    [CrossRef]
  8. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
    [CrossRef] [PubMed]
  9. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
    [CrossRef]
  10. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
    [CrossRef] [PubMed]
  11. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [CrossRef] [PubMed]
  12. H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
    [CrossRef] [PubMed]
  13. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25(11), 2693–2703 (2008).
    [CrossRef] [PubMed]
  14. D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29(1), 88–100 (2012).
    [CrossRef]
  15. D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101(18), 183104 (2012).
    [CrossRef]
  16. D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring arrays modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115(2), 024306 (2014).
    [CrossRef]
  17. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  18. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [CrossRef]
  19. J. Kennedy, A Fast Bresenham Type Algorithm For Drawing Circles (2012).
  20. P. Blake, “Refractive Index Chemical Sensing with Noble Metal Nanoparticles,” University of Arkansas (2012).
  21. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997), pp. 286–295.
  22. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of Electromagnetic Waves on a Rectangular Lattice of Polarizable Points,” http://arxiv.org/abs/astro-ph/0403082 (2004).
  23. A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
    [CrossRef]
  24. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
    [CrossRef] [PubMed]
  25. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
    [CrossRef]
  26. S. L. Teo, V. K. Lin, R. Marty, N. Large, E. A. Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express 18(21), 22271–22282 (2010).
    [CrossRef] [PubMed]
  27. P. Blake, W. Ahn, and D. K. Roper, “Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization,” Langmuir 26(3), 1533–1538 (2010).
    [CrossRef] [PubMed]
  28. C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays,” Opt. Express 21(12), 14090–14096 (2013).
    [CrossRef] [PubMed]
  29. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [CrossRef]
  30. D. K. Roper, P. Blake, D. DeJarnette, and B. Harbin, “Plasmon Coupling Enhanced in Nanostructured Chem/Bio Sensors,” in Nanoplasmonics: Advanced Device Applications, J. W. M. Chon and K. Iniewski, eds. (CRC Press, 2013), pp. 183–219.
  31. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
    [CrossRef] [PubMed]
  32. J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
    [CrossRef] [PubMed]
  33. S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006).
    [CrossRef] [PubMed]
  34. A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7(2), 1755–1762 (2013).
    [CrossRef] [PubMed]
  35. D. K. Roper, “Self-Assembly of Nanodroplets in Nanocomposite Materials in Nanodroplets Science and Technology,” in Nanodroplets, Z. M. Wang, ed. (Springer, 2013), pp. 73–97.
  36. H. Liu, X. Zhang, and T. Zhai, “Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms,” Opt. Express 21(13), 15314–15322 (2013).
    [CrossRef] [PubMed]
  37. C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
    [CrossRef] [PubMed]
  38. H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
    [CrossRef]
  39. J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112(14), 5605–5617 (2008).
    [CrossRef]
  40. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
    [CrossRef] [PubMed]
  41. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
    [CrossRef] [PubMed]
  42. M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
    [CrossRef]
  43. B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009).
    [CrossRef] [PubMed]
  44. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  45. P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics 8(1), 083084 (2014).
    [CrossRef]
  46. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
    [CrossRef] [PubMed]
  47. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [CrossRef] [PubMed]

2014 (4)

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photonics Res. 2(1), 15–23 (2014).
[CrossRef]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring arrays modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115(2), 024306 (2014).
[CrossRef]

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics 8(1), 083084 (2014).
[CrossRef]

2013 (3)

2012 (7)

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29(1), 88–100 (2012).
[CrossRef]

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
[CrossRef] [PubMed]

H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
[CrossRef]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101(18), 183104 (2012).
[CrossRef]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[CrossRef]

2011 (2)

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

2010 (6)

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sensors 10(3), 531–540 (2010).
[CrossRef]

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

P. Blake, W. Ahn, and D. K. Roper, “Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization,” Langmuir 26(3), 1533–1538 (2010).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

S. L. Teo, V. K. Lin, R. Marty, N. Large, E. A. Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express 18(21), 22271–22282 (2010).
[CrossRef] [PubMed]

2009 (3)

B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[CrossRef] [PubMed]

2008 (7)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112(14), 5605–5617 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25(11), 2693–2703 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
[CrossRef]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

2006 (2)

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2005 (1)

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

2003 (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

1999 (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[CrossRef]

1994 (1)

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Ahn, W.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sensors 10(3), 531–540 (2010).
[CrossRef]

P. Blake, W. Ahn, and D. K. Roper, “Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization,” Langmuir 26(3), 1533–1538 (2010).
[CrossRef] [PubMed]

Aizpurua, J.

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

Altug, H.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Arbouet, A.

Auguié, B.

B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Baffou, G.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Berry, K. R.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

Birke, R. L.

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112(14), 5605–5617 (2008).
[CrossRef]

Blake, P.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics 8(1), 083084 (2014).
[CrossRef]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring arrays modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115(2), 024306 (2014).
[CrossRef]

P. Blake, W. Ahn, and D. K. Roper, “Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization,” Langmuir 26(3), 1533–1538 (2010).
[CrossRef] [PubMed]

Borghs, G.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[CrossRef] [PubMed]

Bouhelier, A.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

Chang, K.-H.

Chi, T.-T.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Chiang, C.-P.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Choi, D.-G.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006).
[CrossRef] [PubMed]

Chou, H.-Y. E.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Corn, R. M.

A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7(2), 1755–1762 (2013).
[CrossRef] [PubMed]

Dall’Asen, A. G.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sensors 10(3), 531–540 (2010).
[CrossRef]

DeJarnette, D.

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photonics Res. 2(1), 15–23 (2014).
[CrossRef]

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring arrays modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115(2), 024306 (2014).
[CrossRef]

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29(1), 88–100 (2012).
[CrossRef]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101(18), 183104 (2012).
[CrossRef]

Dereux, A.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
[CrossRef]

Draine, B. T.

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[CrossRef]

Flatau, P. J.

Forcherio, G. T.

D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring arrays modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115(2), 024306 (2014).
[CrossRef]

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics 8(1), 083084 (2014).
[CrossRef]

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

Girard, C.

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Halas, N. J.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Halpern, A. R.

A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7(2), 1755–1762 (2013).
[CrossRef] [PubMed]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Harbin, B.

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Hohenau, A.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
[CrossRef]

Huang, C.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[CrossRef]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Jung, H.-T.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006).
[CrossRef] [PubMed]

Jung, J.-M.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006).
[CrossRef] [PubMed]

Käll, M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kennedy, J.

J. Kennedy, A Fast Bresenham Type Algorithm For Drawing Circles (2012).

Kiang, Y.-W.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Kim, S.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006).
[CrossRef] [PubMed]

Koller, D.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
[CrossRef]

Krenn, J.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
[CrossRef]

Kühne, S.

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics 8(1), 083084 (2014).
[CrossRef]

Lagae, L.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[CrossRef]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[CrossRef] [PubMed]

Large, N.

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Lee, C.-K.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lee, P.-T.

C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays,” Opt. Express 21(12), 14090–14096 (2013).
[CrossRef] [PubMed]

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
[CrossRef] [PubMed]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Li, B.

H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
[CrossRef]

Lin, J.-W.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
[CrossRef] [PubMed]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Lin, P.-T.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
[CrossRef] [PubMed]

Lin, V. K.

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[CrossRef]

Lisunova, M.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

Liu, H.

H. Liu, X. Zhang, and T. Zhai, “Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms,” Opt. Express 21(13), 15314–15322 (2013).
[CrossRef] [PubMed]

H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
[CrossRef]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Llado, E. A.

Lombardi, J. R.

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112(14), 5605–5617 (2008).
[CrossRef]

Lu, S.-P.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Lu, T.-W.

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Maes, G.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[CrossRef] [PubMed]

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Marty, R.

Mary, A.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
[CrossRef]

Mlayah, A.

Noguez, C.

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

Nordlander, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Norman, J.

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photonics Res. 2(1), 15–23 (2014).
[CrossRef]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101(18), 183104 (2012).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Roper, D. K.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics 8(1), 083084 (2014).
[CrossRef]

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photonics Res. 2(1), 15–23 (2014).
[CrossRef]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring arrays modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115(2), 024306 (2014).
[CrossRef]

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29(1), 88–100 (2012).
[CrossRef]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101(18), 183104 (2012).
[CrossRef]

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sensors 10(3), 531–540 (2010).
[CrossRef]

P. Blake, W. Ahn, and D. K. Roper, “Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization,” Langmuir 26(3), 1533–1538 (2010).
[CrossRef] [PubMed]

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Stakenborg, T.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Taylor, B.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sensors 10(3), 531–540 (2010).
[CrossRef]

Teo, S. L.

Tripathy, S.

Tsai, C.-Y.

C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays,” Opt. Express 21(12), 14090–14096 (2013).
[CrossRef] [PubMed]

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
[CrossRef] [PubMed]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

Tsai, M.-T.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Tseng, H.-Y.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

Van Dorpe, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Wang, J.-Y.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Wang, S.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[CrossRef]

Wei, X.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wu, C.-Y.

C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays,” Opt. Express 21(12), 14090–14096 (2013).
[CrossRef] [PubMed]

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
[CrossRef] [PubMed]

Wu, S.-Y.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Wu, X.

H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
[CrossRef]

Wu, Y.-C.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Xu, C.

H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
[CrossRef]

Yang, C. C.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Yang, K.-M.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Yang, S.-M.

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006).
[CrossRef] [PubMed]

Ye, J.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[CrossRef]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[CrossRef] [PubMed]

Zhai, T.

Zhang, G.

H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
[CrossRef]

Zhang, J. Z.

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

Zhang, X.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zheng, L.

H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
[CrossRef]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

ACS Nano (5)

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
[CrossRef] [PubMed]

A. R. Halpern and R. M. Corn, “Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances,” ACS Nano 7(2), 1755–1762 (2013).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[CrossRef] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano 6(11), 9989–9995 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100(15), 153114 (2012).
[CrossRef]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100(17), 173114 (2012).
[CrossRef]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[CrossRef] [PubMed]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101(18), 183104 (2012).
[CrossRef]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458(4-6), 262–266 (2008).
[CrossRef]

IEEE Sensors (1)

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sensors 10(3), 531–540 (2010).
[CrossRef]

J. Appl. Phys. (1)

D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring arrays modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115(2), 024306 (2014).
[CrossRef]

J. Nanophotonics (1)

P. Blake, S. Kühne, G. T. Forcherio, and D. K. Roper, “Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes,” J. Nanophotonics 8(1), 083084 (2014).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[CrossRef]

J. Phys. Chem. C (1)

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112(14), 5605–5617 (2008).
[CrossRef]

Langmuir (2)

S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, “Patterned arrays of Au rings for localized surface plasmon resonance,” Langmuir 22(17), 7109–7112 (2006).
[CrossRef] [PubMed]

P. Blake, W. Ahn, and D. K. Roper, “Enhanced uniformity in arrays of electroless plated spherical gold nanoparticles using tin presensitization,” Langmuir 26(3), 1533–1538 (2010).
[CrossRef] [PubMed]

Nano Lett. (4)

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12(3), 1648–1654 (2012).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Nanotechnology (2)

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 465203 (2009).
[CrossRef] [PubMed]

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21(29), 295102 (2010).
[CrossRef] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Photonics Res. (1)

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photonics Res. 2(1), 15–23 (2014).
[CrossRef]

Phys. Rev. B (1)

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76(24), 245422 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Plasmonics (1)

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[CrossRef]

RSC Adv. (1)

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4(40), 20894 (2014).
[CrossRef]

Other (6)

D. K. Roper, “Self-Assembly of Nanodroplets in Nanocomposite Materials in Nanodroplets Science and Technology,” in Nanodroplets, Z. M. Wang, ed. (Springer, 2013), pp. 73–97.

D. K. Roper, P. Blake, D. DeJarnette, and B. Harbin, “Plasmon Coupling Enhanced in Nanostructured Chem/Bio Sensors,” in Nanoplasmonics: Advanced Device Applications, J. W. M. Chon and K. Iniewski, eds. (CRC Press, 2013), pp. 183–219.

J. Kennedy, A Fast Bresenham Type Algorithm For Drawing Circles (2012).

P. Blake, “Refractive Index Chemical Sensing with Noble Metal Nanoparticles,” University of Arkansas (2012).

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1997), pp. 286–295.

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of Electromagnetic Waves on a Rectangular Lattice of Polarizable Points,” http://arxiv.org/abs/astro-ph/0403082 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Depiction of spatial dimensions for rectilinear lattices of nanorings: r in is the inner radius, t is the wall thickness, h is the nanoring height, and d x and d y are the lattice constants in the x and y direction, respectively. Rings are shown discretized according to DDA with 6300 dipoles at dimensions of r in = 40 nm, t = 10 nm, and h = 50 nm. Scanning electron microscope images of self-assembled rings via electroless plating are shown.

Fig. 2
Fig. 2

Simulated extinction spectra of isolated nanorings with r in = 20 nm (blue), 40 nm (red), 60 nm (green), 80 nm (purple), and 100 nm (orange). Thicknesses, t, of (a) 10 nm and (b) 20 nm with h = 50 nm were investigated. Spectral features at 564 nm, 1265 nm, and 1378 nm are RI data artifacts, not plasmonic activity from varying nanoring geometry. Light was incident onto the ring face and polarized along the y-axis.

Fig. 3
Fig. 3

Simulated extinction spectra for nanoring of r in = 80 nm, t = 10 nm, and h = 50 nm (dashed black) configured into regular square lattices at spacings, d, of (a) 800 nm (blue), 900 nm (green), 1000 nm (yellow), and 1100 nm (red). Peak shifts of the apparent plasmon and lattice resonances are labeled with black and blue arrows, respectively, to increasing d. The apparent plasmon (black circle) and lattice (blue triangle) resonance (b) peak wavelength and (c) extinction efficiency as a function of lattice constant from 900 nm to 1000 nm are plotted with a 10 nm step size.

Fig. 4
Fig. 4

Complex polarizability function (blue) for a single nanoring with r in = 80 nm, t = 10 nm, h = 50 nm geometry. A vertical line is shown at 940 nm, corresponding to the observed lattice constant resulting in a 4-fold extinction magnitude enhancement [see Fig. 3(c)]. The summation between respective magnitudes of Re(α) and Im(α) is shown in red.

Fig. 5
Fig. 5

Simulated RI sensitivity, S, for a nanoring lattice (solid) with r in = 80 nm, t = 10 nm, h = 50 nm, and d = 940 nm, evaluated from responses to RI environments of n = 1 (green) and n = 1.33 (blue), representing air and water respectively. Arrows show the peak shifts from n = 1 to n = 1.33, with corresponding sensitivity labels for each peak. RI sensitivity of isolated nanorings of the same geometry is shown as dotted lines.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α eff = j=1 n d di 3 P j E o

Metrics