Abstract

Abstract: This work demonstrates an electrically tunable silicon nitride (SiN) micro-ring resonator with polymer-stabilized blue phase liquid crystals (PSBPLCs) cladding. An external vertical electric field is applied to modulate the refractive index of the PSBPLCs by exploiting its fast-response Kerr effect-induced birefringence. The consequent change in the refractive index of the cladding can vary the effective refractive index of the micro-ring resonator and shift the resonant wavelength. Crystalline structures of PSBPLCs with a scale of the order of hundreds of nanometers ensure that the resonator has a very low optical loss. The measured tuning range is 0.45 nm for TM polarized light under an applied voltage of 150V and the corresponding response time is in the sub-millisecond range with a Q-factor of greater than 20,000.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
    [CrossRef] [PubMed]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  3. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
    [CrossRef] [PubMed]
  4. T.-J. Wang, C.-H. Chu, and C.-Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32(19), 2777–2779 (2007).
    [CrossRef] [PubMed]
  5. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
    [CrossRef]
  6. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
    [CrossRef]
  7. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [CrossRef] [PubMed]
  8. J. Ptasinski, S. W. Kim, L. Pang, I. C. Khoo, and Y. Fainman, “Optical tuning of silicon photonic structures with nematic liquid crystal claddings,” Opt. Lett. 38(12), 2008–2010 (2013).
    [CrossRef] [PubMed]
  9. S. Lambert, W. De Cort, J. Beeckman, K. Neyts, and R. Baets, “Trimming of silicon-on-insulator ring resonators with a polymerizable liquid crystal cladding,” Opt. Lett. 37(9), 1475–1477 (2012).
    [CrossRef] [PubMed]
  10. J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials 7(3), 2229–2241 (2014).
    [CrossRef]
  11. T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett. 97, 121109 (2010).
  12. W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett. 36(19), 3876–3878 (2011).
    [CrossRef] [PubMed]
  13. T.-J. Wang, S.-C. Yang, T.-J. Chen, and B.-Y. Chen, “Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal,” Opt. Express 20(14), 15853–15858 (2012).
    [CrossRef] [PubMed]
  14. T.-J. Wang, W.-J. Li, and T.-J. Chen, “Radially realigning nematic liquid crystal for efficient tuning of microring resonators,” Opt. Express 21(23), 28974–28979 (2013).
    [CrossRef] [PubMed]
  15. F. Costache and M. Blasl, “Optical switching with isotropic liquid crystals,” Optik and Photonik 6(4), 29–31 (2011).
    [CrossRef]
  16. R. Yamamota, S. Ishihara, S. Hayakawa, and K. Morimoto, “The Kerr constants and relaxation times in the isotropic phase of nematic homologous series,” Phys. Lett. A 69(4), 276–278 (1978).
    [CrossRef]
  17. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
    [CrossRef]
  18. J. Yan and S.-T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial,” Opt. Mater. Express 1(8), 1527–1535 (2011).
    [CrossRef]
  19. Y.-H. Chen, C.-T. Wang, C.-P. Yu, and T.-H. Lin, “Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time,” Opt. Express 19(25), 25441–25446 (2011).
    [CrossRef] [PubMed]
  20. J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
    [CrossRef]

2014

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials 7(3), 2229–2241 (2014).
[CrossRef]

2013

2012

2011

2010

2008

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

2007

2005

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2003

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

1978

R. Yamamota, S. Ishihara, S. Hayakawa, and K. Morimoto, “The Kerr constants and relaxation times in the isotropic phase of nematic homologous series,” Phys. Lett. A 69(4), 276–278 (1978).
[CrossRef]

Agarwal, A.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Asghari, M.

Baets, R.

Banwell, T.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Beeckman, J.

Blasl, M.

F. Costache and M. Blasl, “Optical switching with isotropic liquid crystals,” Optik and Photonik 6(4), 29–31 (2011).
[CrossRef]

Cai, T.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett. 97, 121109 (2010).

Cao, W.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Chen, B.-Y.

Chen, P.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett. 97, 121109 (2010).

Chen, T.-J.

Chen, Y.-H.

Cheng, H.-C.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[CrossRef]

Chi, H.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Chu, C.-H.

Claes, T.

Costache, F.

F. Costache and M. Blasl, “Optical switching with isotropic liquid crystals,” Optik and Photonik 6(4), 29–31 (2011).
[CrossRef]

De Cort, W.

Dong, P.

Fainman, Y.

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials 7(3), 2229–2241 (2014).
[CrossRef]

J. Ptasinski, S. W. Kim, L. Pang, I. C. Khoo, and Y. Fainman, “Optical tuning of silicon photonic structures with nematic liquid crystal claddings,” Opt. Lett. 38(12), 2008–2010 (2013).
[CrossRef] [PubMed]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Feng, D.

Feng, N.-N.

Goldhar, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Hayakawa, S.

R. Yamamota, S. Ishihara, S. Hayakawa, and K. Morimoto, “The Kerr constants and relaxation times in the isotropic phase of nematic homologous series,” Phys. Lett. A 69(4), 276–278 (1978).
[CrossRef]

He, S.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett. 97, 121109 (2010).

Hisakado, Y.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Ho, P.-T.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Ibrahim, T. A.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Ishihara, S.

R. Yamamota, S. Ishihara, S. Hayakawa, and K. Morimoto, “The Kerr constants and relaxation times in the isotropic phase of nematic homologous series,” Phys. Lett. A 69(4), 276–278 (1978).
[CrossRef]

Jiao, M.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[CrossRef]

Kajiyama, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Khoo, I. C.

Khoo, I.-C.

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials 7(3), 2229–2241 (2014).
[CrossRef]

Kikuchi, H.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Kim, S. W.

Kim, Y.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Lambert, S.

Lee, D. C.

Li, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

Li, W.-J.

Li, Y.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[CrossRef]

Liang, H.

Lin, C.-Y.

Lin, T.-H.

Lipson, M.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Liu, Q.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett. 97, 121109 (2010).

Luff, B. J.

Manipatruni, S.

Martinez, J. A.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

Menendez, R.

Morimoto, K.

R. Yamamota, S. Ishihara, S. Hayakawa, and K. Morimoto, “The Kerr constants and relaxation times in the isotropic phase of nematic homologous series,” Phys. Lett. A 69(4), 276–278 (1978).
[CrossRef]

Nagamura, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Nawrocka, M. S.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

Neyts, K.

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Panepucci, R. R.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Pang, L.

Ptasinski, J.

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials 7(3), 2229–2241 (2014).
[CrossRef]

J. Ptasinski, S. W. Kim, L. Pang, I. C. Khoo, and Y. Fainman, “Optical tuning of silicon photonic structures with nematic liquid crystal claddings,” Opt. Lett. 38(12), 2008–2010 (2013).
[CrossRef] [PubMed]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Qian, W.

Rao, L.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[CrossRef]

Schmidt, B.

Shakya, J.

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Shi, Y.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett. 97, 121109 (2010).

Toliver, P.

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Wang, C.-T.

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Wang, T.-J.

Wang, X.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Woodward, T. K.

Wu, S.-T.

J. Yan and S.-T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial,” Opt. Mater. Express 1(8), 1527–1535 (2011).
[CrossRef]

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[CrossRef]

Xu, Q.

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Yamamota, R.

R. Yamamota, S. Ishihara, S. Hayakawa, and K. Morimoto, “The Kerr constants and relaxation times in the isotropic phase of nematic homologous series,” Phys. Lett. A 69(4), 276–278 (1978).
[CrossRef]

Yan, J.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[CrossRef]

J. Yan and S.-T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial,” Opt. Mater. Express 1(8), 1527–1535 (2011).
[CrossRef]

Yang, S.-C.

Yu, C.-P.

Adv. Mater.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[CrossRef]

Appl. Phys. Lett.

T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett. 97, 121109 (2010).

IEEE Photon. Technol. Lett.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and H. Chi, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003).
[CrossRef]

J. Mater. Chem.

J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, and S.-T. Wu, “Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications,” J. Mater. Chem. 21(22), 7870–7877 (2011).
[CrossRef]

Materials

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials 7(3), 2229–2241 (2014).
[CrossRef]

Nature

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Optik and Photonik

F. Costache and M. Blasl, “Optical switching with isotropic liquid crystals,” Optik and Photonik 6(4), 29–31 (2011).
[CrossRef]

Phys. Lett. A

R. Yamamota, S. Ishihara, S. Hayakawa, and K. Morimoto, “The Kerr constants and relaxation times in the isotropic phase of nematic homologous series,” Phys. Lett. A 69(4), 276–278 (1978).
[CrossRef]

Science

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-section, (b) top view of proposed resonator, and (c) photograph of proposed resonator with PSBPLC cladding, taken under R-POM without a polarizer.

Fig. 2
Fig. 2

Principles of electrical switching of proposed resonator in (a)Voff and (b)Von states.

Fig. 3
Fig. 3

(a) Variation of resonant wavelength as a function of driving voltage, and corresponding spectra (at 1548.98nm) at V = 0, 50, 90,120, 150V.

Fig. 4
Fig. 4

FWHM and Q-factor at V = 0, 50, 90,120, 150V.

Fig. 5
Fig. 5

(a) Response time versus applied voltage. (b) Response time of designed device at applied voltage of 150V.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n a v e = ( 2 n o + n e ) / 3 ,
Δ n = λ K E 2 = ( Δ n ) o ( E / E s ) 2

Metrics