Abstract

We demonstrate a source of 554 nm pulses with 2.7 ps pulse duration and 1.41 W average power, at a repetition rate of 300 MHz. The yellow-green pulse train is generated from the second harmonic of a 1.11 μm fiber laser source in periodically-poled stoichiometric LiTaO3. A total fundamental power of 2.52 W was used, giving a conversion efficiency of 56%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
    [CrossRef] [PubMed]
  2. G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
    [CrossRef]
  3. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
    [CrossRef]
  4. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
    [CrossRef]
  5. H. Yu, K. Wu, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning,” Opt. Lett. 36, 1281–1283 (2011).
    [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  7. Z. Wang, Q. Peng, Y. Bo, J. Xu, S. Xie, C. Li, Y. Xu, F. Yang, Y. Wang, D. Cui, and Z. Xu, “Yellow-green 52.3W laser at 556nm based on frequency doubling of a diode side-pumped Q-switched Nd:YAG laser,” Appl. Opt. 49, 3465–3469 (2010).
    [CrossRef] [PubMed]
  8. S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
    [CrossRef]
  9. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17, 569–574 (2009).
    [CrossRef] [PubMed]
  10. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18, 5289–5294 (2010).
    [CrossRef] [PubMed]
  11. F. Gérôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381–2386 (2008).
    [CrossRef] [PubMed]
  12. S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
    [CrossRef]
  13. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
    [CrossRef]
  14. D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17, 20833–20839 (2009).
    [CrossRef] [PubMed]
  15. K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18, 21350–21355 (2010).
    [CrossRef] [PubMed]
  16. G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012).
    [CrossRef] [PubMed]
  17. V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser,” Opt. Lett. 21, 390–392 (1996).
    [CrossRef] [PubMed]
  18. M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997).
    [CrossRef] [PubMed]
  19. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier,” Opt. Lett. 23, 1840–1842 (1998).
    [CrossRef]
  20. H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, “Efficient second harmonic generation of femtosecond laser at one micron,” Opt. Express 12, 2150–2155 (2004).
    [CrossRef] [PubMed]
  21. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
    [CrossRef]
  22. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196 (2003).
    [CrossRef] [PubMed]
  23. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
    [CrossRef]
  24. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
    [CrossRef]
  25. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008).
    [CrossRef] [PubMed]
  26. H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19, 22588–22593 (2011).
    [CrossRef] [PubMed]
  27. A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express 19, 23029–23035 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

2010 (3)

2009 (3)

2008 (2)

2005 (2)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[CrossRef]

2004 (1)

2003 (1)

2002 (1)

2001 (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[CrossRef] [PubMed]

1999 (2)

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1980 (1)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Arbore, M. A.

Blau, P.

Bo, Y.

Bruner, A.

Burns, M. M.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Butterworth, S. D.

Canning, J.

Castro, G. R.

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[CrossRef]

Clowes, J.

Cui, D.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Diddams, S. A.

Dupriez, P.

Eger, D.

Erbert, G.

Esposito, E.

Fan, D.

Feder, K. S.

Fedotov, Y. S.

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[CrossRef]

Fejer, M. M.

Feld, M. S.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Fermann, M. E.

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Galvanauskas, A.

Garcia-Parajo, M. F.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[CrossRef] [PubMed]

Gérôme, F.

Granados, E.

Hanna, D. C.

Hariharan, A.

Harter, D.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[CrossRef]

Hinshelwood, D. D.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Hofer, M.

Honda, K.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Ivanenko, A. V.

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[CrossRef]

Jiang, M.

Jones, R. J.

Kaplan, D. L.

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[CrossRef]

Katagai, T.

Katz, M.

Kielpinski, D.

Kieu, K.

Kitamura, K.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Knight, J. C.

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[CrossRef]

Koopman, M.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[CrossRef] [PubMed]

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[CrossRef]

Kurbasov, S. V.

S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
[CrossRef]

Kurimura, S.

Kurz, J. R.

Kuwamoto, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Larson, B. K.

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[CrossRef]

Li, C.

Lim, H. H.

Losev, L. L.

S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
[CrossRef]

Louchev, O. A.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

McConnell, G.

Mio, N.

Moriwaki, S.

Murnick, D. E.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Noguchi, K.

Ohmae, N.

Oron, M. B.

Osterman, S.

Panilaitis, B.

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[CrossRef]

Pappas, P. G.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Parameswaran, K. R.

Paschke, K.

Pask, H. M.

Peng, Q.

Peyghambarian, N.

Pruneri, V.

Pullen, M. G.

Qian, L.

Roussev, R. V.

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

Ruschin, S.

Sahm, A.

Shimizu, T.

Shoji, I.

Spence, D. J.

Stevenson, M.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Subramaniam, V.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[CrossRef] [PubMed]

Suzuki, I.

Takahashi, Y.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Takeno, K.

Tovstonog, S. V.

Tränkle, G.

Uebernickel, M.

van Dijk, E. M.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[CrossRef] [PubMed]

van Hulst, N. F.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wang, J.

Wang, T.

Wang, Y.

Wang, Z.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Westbrook, P. S.

Windeler, R. S.

Wu, K.

Xie, S.

Xu, J.

Xu, Y.

Xu, Z.

Yabuzaki, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Yang, F.

Ycas, G.

Yu, H.

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

Yuan, P.

Zhang, H.

Zheng, W.

Zhu, H.

Appl. Microbiol. Biot. (1)

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[CrossRef]

Laser Phys. (1)

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[CrossRef]

Opt. Commun. (1)

S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
[CrossRef]

Opt. Express (9)

H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, “Efficient second harmonic generation of femtosecond laser at one micron,” Opt. Express 12, 2150–2155 (2004).
[CrossRef] [PubMed]

F. Gérôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381–2386 (2008).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008).
[CrossRef] [PubMed]

E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17, 569–574 (2009).
[CrossRef] [PubMed]

D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17, 20833–20839 (2009).
[CrossRef] [PubMed]

E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18, 5289–5294 (2010).
[CrossRef] [PubMed]

K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18, 21350–21355 (2010).
[CrossRef] [PubMed]

H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19, 22588–22593 (2011).
[CrossRef] [PubMed]

A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express 19, 23029–23035 (2011).
[CrossRef] [PubMed]

Opt. Lett. (7)

G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012).
[CrossRef] [PubMed]

H. Yu, K. Wu, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning,” Opt. Lett. 36, 1281–1283 (2011).
[CrossRef] [PubMed]

M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997).
[CrossRef] [PubMed]

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier,” Opt. Lett. 23, 1840–1842 (1998).
[CrossRef]

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser,” Opt. Lett. 21, 390–392 (1996).
[CrossRef] [PubMed]

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
[CrossRef]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196 (2003).
[CrossRef] [PubMed]

Phys. Rev. A (2)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of experimental setup, showing mode-locked seed laser, supercontinuum generation and amplification stages in optical fiber. The three Yb-doped preamplifier stages are represented by Y1, Y2 and Y3. The pulse duration of the power YDFA output is compressed and the light is focused into an 11 mm fan-out PPSLT crystal. The fundamental and second harmonic are separated by two dichroic filters. (b) A detailed schematic of the 1108 nm preamplifier stages, consisting of a circulator, YDF and a chirped fiber Bragg grating (CFBG).

Fig. 2
Fig. 2

Spectrum of 5 W YDFA output shown on a log scale, showing amplified spontaneous emission (ASE) centered at ∼ 1090 nm which accounts for ∼ 9% of the total power. The ASE is removed through spatial filtering in the grating compressor stage.

Fig. 3
Fig. 3

(a) FROG trace (inset) and time domain retrieval of output pulse from grating compressor, giving a pulse duration of 1.9 ps. (b) Measured optical spectrum of IR pulse train (solid blue), with a center wavelength of 1108.1 nm and FWHM bandwidth of 1.72 nm. In addition, the spectral phase retrieved from the FROG (dashed red) is shown on the right axis.

Fig. 4
Fig. 4

SHG power (circles) and efficiency (squares, inset) plotted against fundamental power. A maximum SHG output of 1.41 W, at 56% efficiency is reached at an input power of 2.52 W. Using the maximum measured nonlinear efficiency of 51.6%/W, a quadratic estimate of SHG power levels and efficiencies (solid blue) and an estimate accounting for pump depletion (dashed green) are shown on both axes.

Fig. 5
Fig. 5

(a) Autocorrelation trace of the second harmonic pulse. The solid line represents a sech2 fit to the data, which gives a 2.66 ± 0.01 ps pulse duration. (b) Measured SHG spectrum, with 554.09 nm center wavelength and 0.19 nm FWHM bandwidth.

Fig. 6
Fig. 6

Time domain photodiode trace of SHG pulse train, showing pulse to pulse amplitude variation of < 5%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P SHG = P 0 tanh 2 η P 0

Metrics