Abstract

We demonstrate a source of 554 nm pulses with 2.7 ps pulse duration and 1.41 W average power, at a repetition rate of 300 MHz. The yellow-green pulse train is generated from the second harmonic of a 1.11 μm fiber laser source in periodically-poled stoichiometric LiTaO3. A total fundamental power of 2.52 W was used, giving a conversion efficiency of 56%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic

Mahmood Irtiza Hussain, Matthew Joseph Petrasiunas, Christopher D. B. Bentley, Richard L. Taylor, André R. R. Carvalho, Joseph J. Hope, Erik W. Streed, Mirko Lobino, and David Kielpinski
Opt. Express 24(15) 16638-16648 (2016)

Efficient all-solid-state yellow laser source producing 1.2-W average power

H. M. Pask and J. A. Piper
Opt. Lett. 24(21) 1490-1492 (1999)

Polarisation maintaining 100W Yb-fiber MOPA producing µJ pulses tunable in duration from 1 to 21 ps

Kang Kang Chen, Jonathan H. V. Price, Shaif-ul Alam, John R. Hayes, Dejiao Lin, Andrew Malinowski, and David J. Richardson
Opt. Express 18(14) 14385-14394 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
    [Crossref] [PubMed]
  2. G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
    [Crossref]
  3. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
    [Crossref]
  4. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
    [Crossref]
  5. H. Yu, K. Wu, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning,” Opt. Lett. 36, 1281–1283 (2011).
    [Crossref] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  7. Z. Wang, Q. Peng, Y. Bo, J. Xu, S. Xie, C. Li, Y. Xu, F. Yang, Y. Wang, D. Cui, and Z. Xu, “Yellow-green 52.3W laser at 556nm based on frequency doubling of a diode side-pumped Q-switched Nd:YAG laser,” Appl. Opt. 49, 3465–3469 (2010).
    [Crossref] [PubMed]
  8. S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
    [Crossref]
  9. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17, 569–574 (2009).
    [Crossref] [PubMed]
  10. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18, 5289–5294 (2010).
    [Crossref] [PubMed]
  11. F. Gérôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381–2386 (2008).
    [Crossref] [PubMed]
  12. S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
    [Crossref]
  13. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
    [Crossref]
  14. D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17, 20833–20839 (2009).
    [Crossref] [PubMed]
  15. K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18, 21350–21355 (2010).
    [Crossref] [PubMed]
  16. G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012).
    [Crossref] [PubMed]
  17. V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser,” Opt. Lett. 21, 390–392 (1996).
    [Crossref] [PubMed]
  18. M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997).
    [Crossref] [PubMed]
  19. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier,” Opt. Lett. 23, 1840–1842 (1998).
    [Crossref]
  20. H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, “Efficient second harmonic generation of femtosecond laser at one micron,” Opt. Express 12, 2150–2155 (2004).
    [Crossref] [PubMed]
  21. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
    [Crossref]
  22. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196 (2003).
    [Crossref] [PubMed]
  23. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
    [Crossref]
  24. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
    [Crossref]
  25. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008).
    [Crossref] [PubMed]
  26. H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19, 22588–22593 (2011).
    [Crossref] [PubMed]
  27. A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express 19, 23029–23035 (2011).
    [Crossref] [PubMed]

2012 (1)

2011 (4)

2010 (3)

2009 (3)

2008 (2)

2005 (2)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[Crossref]

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

2001 (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[Crossref] [PubMed]

1999 (2)

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

1980 (1)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Arbore, M. A.

Blau, P.

Bo, Y.

Bruner, A.

Burns, M. M.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Butterworth, S. D.

Canning, J.

Castro, G. R.

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[Crossref]

Clowes, J.

Cui, D.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Diddams, S. A.

Dupriez, P.

Eger, D.

Erbert, G.

Esposito, E.

Fan, D.

Feder, K. S.

Fedotov, Y. S.

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[Crossref]

Fejer, M. M.

Feld, M. S.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Fermann, M. E.

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Galvanauskas, A.

Garcia-Parajo, M. F.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[Crossref] [PubMed]

Gérôme, F.

Granados, E.

Hanna, D. C.

Hariharan, A.

Harter, D.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Hinshelwood, D. D.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Hofer, M.

Honda, K.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Ivanenko, A. V.

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[Crossref]

Jiang, M.

Jones, R. J.

Kaplan, D. L.

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[Crossref]

Katagai, T.

Katz, M.

Kielpinski, D.

Kieu, K.

Kitamura, K.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Knight, J. C.

Kobtsev, S. M.

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[Crossref]

Koopman, M.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[Crossref] [PubMed]

Kukarin, S. V.

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[Crossref]

Kurbasov, S. V.

S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
[Crossref]

Kurimura, S.

Kurz, J. R.

Kuwamoto, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Larson, B. K.

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[Crossref]

Li, C.

Lim, H. H.

Losev, L. L.

S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
[Crossref]

Louchev, O. A.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[Crossref]

McConnell, G.

Mio, N.

Moriwaki, S.

Murnick, D. E.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Noguchi, K.

Ohmae, N.

Oron, M. B.

Osterman, S.

Panilaitis, B.

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[Crossref]

Pappas, P. G.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

Parameswaran, K. R.

Paschke, K.

Pask, H. M.

Peng, Q.

Peyghambarian, N.

Pruneri, V.

Pullen, M. G.

Qian, L.

Roussev, R. V.

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

Ruschin, S.

Sahm, A.

Shimizu, T.

Shoji, I.

Spence, D. J.

Stevenson, M.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Subramaniam, V.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[Crossref] [PubMed]

Suzuki, I.

Takahashi, Y.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Takeno, K.

Tovstonog, S. V.

Tränkle, G.

Uebernickel, M.

van Dijk, E. M.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[Crossref] [PubMed]

van Hulst, N. F.

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[Crossref] [PubMed]

Wadsworth, W. J.

Wang, J.

Wang, T.

Wang, Y.

Wang, Z.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Westbrook, P. S.

Windeler, R. S.

Wu, K.

Xie, S.

Xu, J.

Xu, Y.

Xu, Z.

Yabuzaki, T.

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Yang, F.

Ycas, G.

Yu, H.

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[Crossref]

Yuan, P.

Zhang, H.

Zheng, W.

Zhu, H.

Appl. Microbiol. Biot. (1)

G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Laser Phys. (1)

S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011).
[Crossref]

Opt. Commun. (1)

S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999).
[Crossref]

Opt. Express (9)

H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, “Efficient second harmonic generation of femtosecond laser at one micron,” Opt. Express 12, 2150–2155 (2004).
[Crossref] [PubMed]

F. Gérôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381–2386 (2008).
[Crossref] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008).
[Crossref] [PubMed]

E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17, 569–574 (2009).
[Crossref] [PubMed]

D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17, 20833–20839 (2009).
[Crossref] [PubMed]

E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18, 5289–5294 (2010).
[Crossref] [PubMed]

K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18, 21350–21355 (2010).
[Crossref] [PubMed]

H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19, 22588–22593 (2011).
[Crossref] [PubMed]

A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express 19, 23029–23035 (2011).
[Crossref] [PubMed]

Opt. Lett. (7)

G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660–2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012).
[Crossref] [PubMed]

H. Yu, K. Wu, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning,” Opt. Lett. 36, 1281–1283 (2011).
[Crossref] [PubMed]

M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997).
[Crossref] [PubMed]

M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier,” Opt. Lett. 23, 1840–1842 (1998).
[Crossref]

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser,” Opt. Lett. 21, 390–392 (1996).
[Crossref] [PubMed]

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
[Crossref]

A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196 (2003).
[Crossref] [PubMed]

Phys. Rev. A (2)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[Crossref]

T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of experimental setup, showing mode-locked seed laser, supercontinuum generation and amplification stages in optical fiber. The three Yb-doped preamplifier stages are represented by Y1, Y2 and Y3. The pulse duration of the power YDFA output is compressed and the light is focused into an 11 mm fan-out PPSLT crystal. The fundamental and second harmonic are separated by two dichroic filters. (b) A detailed schematic of the 1108 nm preamplifier stages, consisting of a circulator, YDF and a chirped fiber Bragg grating (CFBG).

Fig. 2
Fig. 2

Spectrum of 5 W YDFA output shown on a log scale, showing amplified spontaneous emission (ASE) centered at ∼ 1090 nm which accounts for ∼ 9% of the total power. The ASE is removed through spatial filtering in the grating compressor stage.

Fig. 3
Fig. 3

(a) FROG trace (inset) and time domain retrieval of output pulse from grating compressor, giving a pulse duration of 1.9 ps. (b) Measured optical spectrum of IR pulse train (solid blue), with a center wavelength of 1108.1 nm and FWHM bandwidth of 1.72 nm. In addition, the spectral phase retrieved from the FROG (dashed red) is shown on the right axis.

Fig. 4
Fig. 4

SHG power (circles) and efficiency (squares, inset) plotted against fundamental power. A maximum SHG output of 1.41 W, at 56% efficiency is reached at an input power of 2.52 W. Using the maximum measured nonlinear efficiency of 51.6%/W, a quadratic estimate of SHG power levels and efficiencies (solid blue) and an estimate accounting for pump depletion (dashed green) are shown on both axes.

Fig. 5
Fig. 5

(a) Autocorrelation trace of the second harmonic pulse. The solid line represents a sech2 fit to the data, which gives a 2.66 ± 0.01 ps pulse duration. (b) Measured SHG spectrum, with 554.09 nm center wavelength and 0.19 nm FWHM bandwidth.

Fig. 6
Fig. 6

Time domain photodiode trace of SHG pulse train, showing pulse to pulse amplitude variation of < 5%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P SHG = P 0 tanh 2 η P 0

Metrics