Abstract

In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Tang and K. A. Shore, “30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber Links without optical amplification and dispersion compensation,” J. Lightwave Technol. 24(6), 2318–2327 (2006).
    [CrossRef]
  2. Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
    [CrossRef]
  3. N. Cvijetic, “OFDM for Next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [CrossRef]
  4. T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2I.1.
    [CrossRef]
  5. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [CrossRef]
  6. D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proceedings of European Conference and Exhibition on Optical Communication, (Berlin, 2007), paper Tu5.4.1.
  7. F. Li, Z. Cao, J. Yu, X. Li, and L. Chen, “SSMI cancellation in direct-detection optical OFDM with novel half-cycled OFDM,” Opt. Express 21(23), 28543–28549 (2013).
    [CrossRef] [PubMed]
  8. F. Li, J. Yu, Y. Fang, Z. Dong, X. Li, and L. Chen, “Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser,” Opt. Express 22(7), 8742–8748 (2014).
    [CrossRef] [PubMed]
  9. Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, D. Rangaraj, A. Cartolano, R. Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing,” Opt. Express 17(20), 17658–17668 (2009).
    [CrossRef] [PubMed]
  10. R. Schmogrow, M. Winter, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “101.5 Gbit/s real-time OFDM transmitter with 16QAM modulated subcarriers,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Los Angeles, 2011), paper OWE5.
    [CrossRef]
  11. X. Q. Jin, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers,” Opt. Express 17(22), 20484–20493 (2009).
    [CrossRef] [PubMed]
  12. M. Chen, J. He, and L. Chen, “Real-time optical OFDM long-reach PON system over 100-km SSMF using a directly modulated DFB laser,” J. Opt. Commun. Netw. 6(1), 18–25 (2014).
    [CrossRef]
  13. M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
    [CrossRef]
  14. E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Approach (Addison-Wesley, Boston, 1993).
  15. Y. Gao, J. Yu, J. Xiao, Z. Cao, F. Li, and L. Chen, “Direct-detection optical OFDM transmission system with pre-emphasis technique,” J. Lightwave Technol. 29(14), 2138–2145 (2011).
    [CrossRef]

2014 (3)

2013 (1)

2012 (1)

2011 (1)

2010 (1)

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
[CrossRef]

2009 (2)

2006 (2)

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Benlachtar, Y.

Bouziane, R.

Cao, Z.

Cartolano, A.

Chen, L.

Chen, M.

M. Chen, J. He, and L. Chen, “Real-time optical OFDM long-reach PON system over 100-km SSMF using a directly modulated DFB laser,” J. Opt. Commun. Netw. 6(1), 18–25 (2014).
[CrossRef]

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[CrossRef]

Cvijetic, N.

Dong, Z.

Fang, Y.

Gao, Y.

Giddings, R. P.

Glick, M.

He, J.

M. Chen, J. He, and L. Chen, “Real-time optical OFDM long-reach PON system over 100-km SSMF using a directly modulated DFB laser,” J. Opt. Commun. Netw. 6(1), 18–25 (2014).
[CrossRef]

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[CrossRef]

Hoe, J. C.

Hugues-Salas, E.

Jin, X. Q.

Killey, R. I.

Koutsoyannis, R.

Li, F.

Li, X.

Lin, Y.-M.

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
[CrossRef]

Milder, P.

Püschel, M.

Rangaraj, D.

Shieh, W.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Shore, K. A.

Tang, J.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[CrossRef]

Tang, J. M.

Tien, P.-L.

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
[CrossRef]

Watts, P. M.

Wu, X.

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[CrossRef]

Xiao, J.

Yu, J.

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

Y.-M. Lin and P.-L. Tien, “Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber,” IEEE J. Sel. Areas Comm. 28(6), 791–799 (2010).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Commun. (1)

M. Chen, J. He, Z. Cao, J. Tang, L. Chen, and X. Wu, “Symbol synchronization and sampling frequency synchronization techniques in real-time DDO-OFDM systems,” Opt. Commun. 326, 80–87 (2014).
[CrossRef]

Opt. Express (4)

Other (4)

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, Z. Tao, and J. Rasmussen, “Discrete Multi-Tone for 100 Gb/s Optical Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper M2I.1.
[CrossRef]

E. C. Ifeachor and B. W. Jervis, Digital Signal Processing: A Practical Approach (Addison-Wesley, Boston, 1993).

R. Schmogrow, M. Winter, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “101.5 Gbit/s real-time OFDM transmitter with 16QAM modulated subcarriers,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Los Angeles, 2011), paper OWE5.
[CrossRef]

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDM-A based 10Gb/s PON architecture,” in Proceedings of European Conference and Exhibition on Optical Communication, (Berlin, 2007), paper Tu5.4.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Architectures of FPGA-based real-time base-band OFDM transceiver and experimental setup.

Fig. 2
Fig. 2

Normalized amplitude response versus sub-carrier and adaptive modulation scheme

Fig. 3
Fig. 3

Transfer curve of the MZM and real-time measured BER performance versus applied bias voltage for MZM

Fig. 4
Fig. 4

EVM versus sub-carrier index

Fig. 5
Fig. 5

Real-time measured BER performance versus launch power

Fig. 6
Fig. 6

256/64/16QAM constellations for (a-c) electrical back-to-back, (d-f) optical back-to-back, and (g-i) after 20km SMF transmission

Fig. 7
Fig. 7

Real-time measured BER performance versus received optical power

Tables (2)

Tables Icon

Table 1 Some Key Parameters for the Real-Time Base-band OFDM Transceiver

Tables Icon

Table 2 7.19Gbps Real-Time DDO-OFDM Systems Performance

Metrics