Abstract

A dual-frequency 1.55 µm laser for CW low noise microwave, millimeter and sub millimeter wave synthesis is demonstrated, where frequency stabilization is possible on each wavelength independently. The solid state Er:Yb laser output power is 7 mW. The amplitude noise is −150 dBc/Hz at 1 MHz offset frequency. In free running regime, the frequency noise is 3.105/f Hz/sqrt(Hz) (800 Hz on a 1µs timescale), better than commercial fibered or semi-conductor sources at this wavelength.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
    [CrossRef]
  2. I. Mukhopadhyay, “Tunable THz sources and their applications,” Int. J. Infrared Millim. Waves 24(7), 1063–1080 (2003).
    [CrossRef]
  3. T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33(24), 2039–2040 (1997).
    [CrossRef]
  4. G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
    [CrossRef] [PubMed]
  5. A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, “Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,” Opt. Express 19(19), 17944–17950 (2011).
    [CrossRef] [PubMed]
  6. G. Danion, G. Loas, L. Frein, C. Hamel, A. Carre, S. Bouhier, M. Vallet, M. Brunel, A. Rolland, M. Alouini, F. Bondu, F. Cleva, J. P. Coulon, M. Merzougui, A. Brillet, A. Beck, G. Ducournau, M. Zaknoune, C. Coinon, X. Wallart, E. Peytavit, T. Akalin, J. F. Lampin, G. Pillet, L. Morvan, G. Baili, and J. Bourderionnet, “High spectral purity microwave and terahertz oscillator,” IEEE/IFC Symposium 40–42 (2013).
    [CrossRef]
  7. F. Bondu, M. Brunel, M. Vallet, G. Loas, M. Romanelli, and M. Alouini, “Device for producing high frequencies by means of light frequency beating,” US patent 20130100973A1 (2013).
  8. M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30(14), 1815–1817 (2005).
    [CrossRef] [PubMed]
  9. G. Karlsson, N. Myrén, W. Margulis, S. Taccheo, and F. Laurell, “Widely tunable fiber-coupled single-frequency Er-Yb:glass laser,” Appl. Opt. 42(21), 4327–4330 (2003).
    [CrossRef] [PubMed]
  10. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,” Opt. Lett. 31(11), 1663–1665 (2006).
    [CrossRef] [PubMed]
  11. S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
    [CrossRef]
  12. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
    [CrossRef]
  13. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
    [CrossRef]
  14. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
    [CrossRef]
  15. L. Richter, H. Andelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [CrossRef]
  16. A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
    [CrossRef]
  17. G. Pillet, L. Morvan, D. Dolfi, J. Schiellein, and T. Merlet, “Stabilization of new generation solid-state dual-frequency laser at 1.5 µm for optical distribution of high purity microwave signals,” IEEE Microwave Photonics163–166 (2010).
  18. F. Hartmann and F. Stoeckel, “Stabilité de fréquence et pureté spectrales des lasers,” J. Phys. Colloq. 39(C1), 31–36 (1978).
  19. M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5 µm,” Electron. Lett. 36(21), 1780–1782 (2000).
    [CrossRef]
  20. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]

2014 (1)

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

2011 (2)

2006 (2)

B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,” Opt. Lett. 31(11), 1663–1665 (2006).
[CrossRef] [PubMed]

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

2005 (1)

2003 (2)

2001 (1)

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

2000 (1)

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5 µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

1999 (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

1998 (1)

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

1997 (1)

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33(24), 2039–2040 (1997).
[CrossRef]

1996 (1)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[CrossRef]

1986 (1)

L. Richter, H. Andelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

1978 (1)

F. Hartmann and F. Stoeckel, “Stabilité de fréquence et pureté spectrales des lasers,” J. Phys. Colloq. 39(C1), 31–36 (1978).

Akalin, T.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
[CrossRef] [PubMed]

Alouini, M.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, “Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,” Opt. Express 19(19), 17944–17950 (2011).
[CrossRef] [PubMed]

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5 µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Andelberg, H.

L. Richter, H. Andelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[CrossRef]

Bacquet, D.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
[CrossRef] [PubMed]

Beck, A.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
[CrossRef] [PubMed]

Bondu, F.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

Bretenaker, F.

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5 µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Brunel, M.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, “Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,” Opt. Express 19(19), 17944–17950 (2011).
[CrossRef] [PubMed]

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5 µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Cattaneo, S.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

Chazelas, J.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Danion, G.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

Della Valle, G.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

Dolfi, D.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

G. Pillet, L. Morvan, D. Dolfi, J. Schiellein, and T. Merlet, “Stabilization of new generation solid-state dual-frequency laser at 1.5 µm for optical distribution of high purity microwave signals,” IEEE Microwave Photonics163–166 (2010).

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Ducournau, G.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Formont, S.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Frein, L.

Hall, J. L.

M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30(14), 1815–1817 (2005).
[CrossRef] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Hartmann, F.

F. Hartmann and F. Stoeckel, “Stabilité de fréquence et pureté spectrales des lasers,” J. Phys. Colloq. 39(C1), 31–36 (1978).

Hidaka, T.

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33(24), 2039–2040 (1997).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Huignard, J. P.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Jacobsson, B.

Karlsson, G.

G. Karlsson, N. Myrén, W. Margulis, S. Taccheo, and F. Laurell, “Widely tunable fiber-coupled single-frequency Er-Yb:glass laser,” Appl. Opt. 42(21), 4327–4330 (2003).
[CrossRef] [PubMed]

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Kruger, M.

L. Richter, H. Andelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[CrossRef]

Lampin, J. F.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
[CrossRef] [PubMed]

Laporta, P.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[CrossRef]

Laurell, F.

Le Floch, A.

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5 µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Loas, G.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, “Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,” Opt. Express 19(19), 17944–17950 (2011).
[CrossRef] [PubMed]

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[CrossRef]

Ma, L. S.

Margulis, W.

G. Karlsson, N. Myrén, W. Margulis, S. Taccheo, and F. Laurell, “Widely tunable fiber-coupled single-frequency Er-Yb:glass laser,” Appl. Opt. 42(21), 4327–4330 (2003).
[CrossRef] [PubMed]

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

Matsuura, S.

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33(24), 2039–2040 (1997).
[CrossRef]

McGrath, P.

L. Richter, H. Andelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[CrossRef]

Merlet, T.

G. Pillet, L. Morvan, D. Dolfi, J. Schiellein, and T. Merlet, “Stabilization of new generation solid-state dual-frequency laser at 1.5 µm for optical distribution of high purity microwave signals,” IEEE Microwave Photonics163–166 (2010).

Monsterleet, A.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Morvan, L.

G. Pillet, L. Morvan, D. Dolfi, J. Schiellein, and T. Merlet, “Stabilization of new generation solid-state dual-frequency laser at 1.5 µm for optical distribution of high purity microwave signals,” IEEE Microwave Photonics163–166 (2010).

Mukhopadhyay, I.

I. Mukhopadhyay, “Tunable THz sources and their applications,” Int. J. Infrared Millim. Waves 24(7), 1063–1080 (2003).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Myrén, N.

Notcutt, M.

Pasiskevicius, V.

Pavanello, F.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

Peytavit, E.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
[CrossRef] [PubMed]

Pillet, G.

G. Pillet, L. Morvan, D. Dolfi, J. Schiellein, and T. Merlet, “Stabilization of new generation solid-state dual-frequency laser at 1.5 µm for optical distribution of high purity microwave signals,” IEEE Microwave Photonics163–166 (2010).

Richter, L.

L. Richter, H. Andelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[CrossRef]

Rolland, A.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, “Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,” Opt. Express 19(19), 17944–17950 (2011).
[CrossRef] [PubMed]

Sakai, K.

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33(24), 2039–2040 (1997).
[CrossRef]

Schiellein, J.

G. Pillet, L. Morvan, D. Dolfi, J. Schiellein, and T. Merlet, “Stabilization of new generation solid-state dual-frequency laser at 1.5 µm for optical distribution of high purity microwave signals,” IEEE Microwave Photonics163–166 (2010).

Sorbello, G.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

Stoeckel, F.

F. Hartmann and F. Stoeckel, “Stabilité de fréquence et pureté spectrales des lasers,” J. Phys. Colloq. 39(C1), 31–36 (1978).

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[CrossRef]

Svelto, O.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[CrossRef]

Szriftgiser, P.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin, “Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer,” Opt. Lett. 36(11), 2044–2046 (2011).
[CrossRef] [PubMed]

Taccheo, S.

G. Karlsson, N. Myrén, W. Margulis, S. Taccheo, and F. Laurell, “Widely tunable fiber-coupled single-frequency Er-Yb:glass laser,” Appl. Opt. 42(21), 4327–4330 (2003).
[CrossRef] [PubMed]

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[CrossRef]

Tani, M.

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33(24), 2039–2040 (1997).
[CrossRef]

Tonda-Goldstein, S.

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

Vallet, M.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

A. Rolland, G. Loas, M. Brunel, L. Frein, M. Vallet, and M. Alouini, “Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source,” Opt. Express 19(19), 17944–17950 (2011).
[CrossRef] [PubMed]

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5 µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Ye, J.

Zaknoune, M.

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Electron. Lett. (3)

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5 µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro-and THz-waves at 1.5 µm by dual-frequency Er: Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[CrossRef]

T. Hidaka, S. Matsuura, M. Tani, and K. Sakai, “CW terahertz wave generation by photomixing using a two-longitudinal-mode laser diode,” Electron. Lett. 33(24), 2039–2040 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Richter, H. Andelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol. (1)

A. Rolland, G. Ducournau, G. Danion, G. Loas, M. Brunel, A. Beck, F. Pavanello, E. Peytavit, T. Akalin, M. Zaknoune, J. F. Lampin, F. Bondu, M. Vallet, P. Szriftgiser, D. Bacquet, and M. Alouini, “Narrow linewidth tunable terahertz radiation by photomixing without servo-locking,” IEEE Trans. Terahertz Sci. Technol. 4(2), 260–266 (2014).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

I. Mukhopadhyay, “Tunable THz sources and their applications,” Int. J. Infrared Millim. Waves 24(7), 1063–1080 (2003).
[CrossRef]

J. Phys. Colloq. (1)

F. Hartmann and F. Stoeckel, “Stabilité de fréquence et pureté spectrales des lasers,” J. Phys. Colloq. 39(C1), 31–36 (1978).

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

Other (3)

G. Pillet, L. Morvan, D. Dolfi, J. Schiellein, and T. Merlet, “Stabilization of new generation solid-state dual-frequency laser at 1.5 µm for optical distribution of high purity microwave signals,” IEEE Microwave Photonics163–166 (2010).

G. Danion, G. Loas, L. Frein, C. Hamel, A. Carre, S. Bouhier, M. Vallet, M. Brunel, A. Rolland, M. Alouini, F. Bondu, F. Cleva, J. P. Coulon, M. Merzougui, A. Brillet, A. Beck, G. Ducournau, M. Zaknoune, C. Coinon, X. Wallart, E. Peytavit, T. Akalin, J. F. Lampin, G. Pillet, L. Morvan, G. Baili, and J. Bourderionnet, “High spectral purity microwave and terahertz oscillator,” IEEE/IFC Symposium 40–42 (2013).
[CrossRef]

F. Bondu, M. Brunel, M. Vallet, G. Loas, M. Romanelli, and M. Alouini, “Device for producing high frequencies by means of light frequency beating,” US patent 20130100973A1 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic section diagram of the two-tunable frequencies laser. M1: input coupler, M2: 99.5% output coupler, o: ordinary axis, e: extraordinary axis. LiTaO3: electro-optic crystals of lithium tantalate, E (e-o): etalon, YVO4: birefringent crystal. (b) Photograph of the dual frequency laser with two independently tunable frequencies.

Fig. 2
Fig. 2

Optical spectrum for different tilt of the etalon on the ordinary axis. The wavelength difference between the two axes can be adjusted over 7 nm span. The optical spectrum analyzer resolution is 0.07 nm.

Fig. 3
Fig. 3

(a). Macro photograph of the electro-optic mechanical assembly, TEC: Peltier effect cooler. In this view, the two optical axes of the laser (o and e) are centered on the two LiTaO3 crystals and oriented along the normal of the view. (b). Optical frequency tuning. The red and green plots represent the electrooptic gain for the extraordinary and ordinary laser axis respectively. The blue plot represents the thermo optic gain reported here for the extraordinary axis only. (c) Illustration of electrooptic beat note tuning at low frequency.

Fig. 4
Fig. 4

(a) Electrical spectrum of a beat note at 12.5 GHz (RBW 30 kHz, sweep time 0.05 s). (b) Max holdmeasurement of the drift of that beat-note on 1 minute (RBW 100 kHz).

Fig. 5
Fig. 5

(a) Relative intensity noise in free running regime (blue line). Shot noise level calculated with 0.3 mW of optical power (pink line). (b) Yellow line: phase noise of one optical carrier among two when the pumping beam is transverse-multimode. Green line: phase noise of one optical carrier when the pumping beam is transverse-monomode. Black line: Phase noise of the beatnote between the two optical carriers.

Metrics