Abstract

The spherical aberration generated when focusing from air into another medium limits the depth at which ultrafast laser machining can be accurately maintained. We investigate how the depth range may be extended using aberration correction via a liquid crystal spatial light modulator (SLM), in both single point and parallel multi-point fabrication in fused silica. At a moderate numerical aperture (NA = 0.5), high fidelity fabrication with a significant level of parallelisation is demonstrated at the working distance of the objective lens, corresponding to a depth in the glass of 2.4 mm. With a higher numerical aperture (NA = 0.75) objective lens, single point fabrication is demonstrated to a depth of 1 mm utilising the full NA, and deeper with reduced NA, while maintaining high repeatability. We present a complementary theoretical model that enables prediction of the effectiveness of SLM based correction for different aberration magnitudes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
    [CrossRef]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  3. H. Zhang, S. Eaton, and P. Herman, “Single-step writing of bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
    [CrossRef] [PubMed]
  4. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
    [CrossRef]
  5. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
    [CrossRef] [PubMed]
  6. T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
    [CrossRef]
  7. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010).
    [CrossRef] [PubMed]
  8. F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
    [CrossRef] [PubMed]
  9. T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photon. 4, 188–193 (2010).
    [CrossRef]
  10. F. Zimmermann, S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Ultrastable bonding of glass with femtosecond laser bursts,” Appl. Opt. 52, 1149–1154 (2013).
    [CrossRef] [PubMed]
  11. B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
    [CrossRef]
  12. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
    [CrossRef]
  13. A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
    [CrossRef]
  14. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express 15, 12395–12408 (2007).
    [CrossRef] [PubMed]
  15. V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. de la Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
    [CrossRef]
  16. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
    [CrossRef]
  17. C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett. 36, 325–327 (2011).
    [CrossRef] [PubMed]
  18. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19, 9419–9425 (2011).
    [CrossRef] [PubMed]
  19. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20, 24949–24956 (2012).
    [CrossRef] [PubMed]
  20. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010).
    [CrossRef] [PubMed]
  21. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16, 5481–5492 (2008).
    [CrossRef] [PubMed]
  22. P. S. Salter and M. J. Booth, “Focussing over the edge: adaptive subsurface laser fabrication up to the sample face,” Opt. Express 20, 19978–19989 (2012).
    [CrossRef] [PubMed]
  23. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281, 880–887 (2008).
    [CrossRef]
  24. B. P. Cumming, M. D. Turner, G. E. Schroder-Turk, S. Debbarma, B. Luther-Davies, and M. Gu, “Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass,” Opt. Express 22, 689–698 (2014).
    [CrossRef] [PubMed]
  25. P. S. Salter, Z. Iqbal, and M. J. Booth, “Analysis of the three-dimensional focal positioning capability of adaptive optic elements,” Int. J. Optomechatronics 7, 1–14 (2013).
    [CrossRef]
  26. M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19, 2112–2120 (2002).
    [CrossRef]
  27. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18, 17059–17065 (2010).
    [CrossRef] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).
  29. R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express 19, 24122–24128 (2011).
    [CrossRef] [PubMed]
  30. A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express 18, 656–661 (2010).
    [CrossRef] [PubMed]
  31. P. Torok, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
    [CrossRef]
  32. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103 (2005).
    [CrossRef]
  33. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18, 24809–24824 (2010).
    [CrossRef] [PubMed]
  34. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
    [CrossRef] [PubMed]

2014 (2)

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[CrossRef]

B. P. Cumming, M. D. Turner, G. E. Schroder-Turk, S. Debbarma, B. Luther-Davies, and M. Gu, “Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass,” Opt. Express 22, 689–698 (2014).
[CrossRef] [PubMed]

2013 (2)

P. S. Salter, Z. Iqbal, and M. J. Booth, “Analysis of the three-dimensional focal positioning capability of adaptive optic elements,” Int. J. Optomechatronics 7, 1–14 (2013).
[CrossRef]

F. Zimmermann, S. Richter, S. Doring, A. Tunnermann, and S. Nolte, “Ultrastable bonding of glass with femtosecond laser bursts,” Appl. Opt. 52, 1149–1154 (2013).
[CrossRef] [PubMed]

2012 (4)

B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
[CrossRef]

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20, 24949–24956 (2012).
[CrossRef] [PubMed]

P. S. Salter and M. J. Booth, “Focussing over the edge: adaptive subsurface laser fabrication up to the sample face,” Opt. Express 20, 19978–19989 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (6)

2009 (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16, 5481–5492 (2008).
[CrossRef] [PubMed]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281, 880–887 (2008).
[CrossRef]

2007 (3)

2005 (2)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103 (2005).
[CrossRef]

2003 (1)

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[CrossRef]

2002 (2)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19, 2112–2120 (2002).
[CrossRef]

1998 (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

1996 (1)

1995 (1)

Arriola, A.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[CrossRef]

Audouard, E.

Beck, R. J.

Bellini, N.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

Bellouard, Y.

B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
[CrossRef]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Birks, T. A.

Bland-Hawthorn, J.

Booker, G. R.

Booth, M. J.

P. S. Salter, Z. Iqbal, and M. J. Booth, “Analysis of the three-dimensional focal positioning capability of adaptive optic elements,” Int. J. Optomechatronics 7, 1–14 (2013).
[CrossRef]

P. S. Salter and M. J. Booth, “Focussing over the edge: adaptive subsurface laser fabrication up to the sample face,” Opt. Express 20, 19978–19989 (2012).
[CrossRef] [PubMed]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19, 9419–9425 (2011).
[CrossRef] [PubMed]

R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express 19, 24122–24128 (2011).
[CrossRef] [PubMed]

A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express 18, 656–661 (2010).
[CrossRef] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010).
[CrossRef] [PubMed]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281, 880–887 (2008).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19, 2112–2120 (2002).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).

Botcherby, E. J.

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281, 880–887 (2008).
[CrossRef]

Boukenter, A.

Bragheri, F.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

Burakov, I. M.

Cheng, G.

Cheng, Y.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Cristiani, I.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

Cumming, B. P.

Davis, K. M.

de la Cruz, A. R.

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. de la Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Debbarma, S.

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Diez-Blanco, V.

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. de la Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Doring, S.

Eaton, S.

Ferrer, A.

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. de la Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Gerke, T. D.

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photon. 4, 188–193 (2010).
[CrossRef]

Gross, S.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[CrossRef]

Gu, M.

Hand, D. P.

He, F.

Herman, P.

Hertel, I. V.

Hirao, K.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Huo, G.

Huot, N.

Iqbal, Z.

P. S. Salter, Z. Iqbal, and M. J. Booth, “Analysis of the three-dimensional focal positioning capability of adaptive optic elements,” Int. J. Optomechatronics 7, 1–14 (2013).
[CrossRef]

Jesacher, A.

Jovanovic, N.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[CrossRef]

Juodkazis, S.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[CrossRef]

Juskaitis, R.

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281, 880–887 (2008).
[CrossRef]

Kamata, M.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103 (2005).
[CrossRef]

Kar, A. K.

Laczik, Z.

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Landon, S.

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Lenssen, B.

B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
[CrossRef]

Leon-Saval, S. G.

Luther-Davies, B.

MacPherson, W. N.

Marcinkevicius, A.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[CrossRef]

Marshall, G. D.

Matsuo, S.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[CrossRef]

Mauclair, C.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Meany, T.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[CrossRef]

Mermillod-Blondin, A.

Midorikawa, K.

Minzioni, P.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

Misawa, H.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[CrossRef]

Mishchik, K.

Miura, K.

Mizeikis, V.

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[CrossRef]

Mondello, C.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

Myiamoto, I.

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Neil, M. A. A.

Ni, J.

Nolte, S.

Obara, M.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103 (2005).
[CrossRef]

Osellame, R.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

Ouerdane, Y.

Paie, P.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

Parriaux, O.

Parry, J. P.

Piestun, R.

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photon. 4, 188–193 (2010).
[CrossRef]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Ramponi, R.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Renner, M.

Richter, S.

Rosenfeld, A.

Salter, P. S.

Schroder-Turk, G. E.

Shephard, J. D.

Siegel, J.

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. de la Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Simmonds, R. D.

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Solis, J.

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. de la Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

Steel, M. J.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[CrossRef]

Stoian, R.

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Sugimoto, N.

Sugioka, K.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

Thomson, R. R.

Toratani, E.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103 (2005).
[CrossRef]

Torok, P.

Tunnermann, A.

Turner, M. D.

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Varga, P.

Vazquez, R. M.

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

von Freymann, G.

Waddie, A.

Waller, E. H.

Weston, N. J.

Wilson, T.

Withford, M. J.

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).

Xiong, H.

Xu, H.

Xu, Z.

Zhang, H.

Zimmermann, F.

Appl. Opt. (1)

Appl. Phys. A (2)

A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys. A 76, 257–260 (2003).
[CrossRef]

T. Meany, S. Gross, N. Jovanovic, A. Arriola, M. J. Steel, and M. J. Withford, “Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm,” Appl. Phys. A 114, 113–118 (2014).
[CrossRef]

Appl. Phys. Lett. (3)

B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. de la Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91, 051104 (2007).
[CrossRef]

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103 (2005).
[CrossRef]

Int. J. Optomechatronics (1)

P. S. Salter, Z. Iqbal, and M. J. Booth, “Analysis of the three-dimensional focal positioning capability of adaptive optic elements,” Int. J. Optomechatronics 7, 1–14 (2013).
[CrossRef]

J. Appl. Phys. (1)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

J. Microsc. (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11, 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

Lab Chip (1)

F. Bragheri, P. Minzioni, R. M. Vazquez, N. Bellini, P. Paie, C. Mondello, R. Ramponi, I. Cristiani, and R. Osellame, “Optofluidic integrated cell sorter fabricated by femtosecond lasers,” Lab Chip 12, 3779–3784 (2012).
[CrossRef] [PubMed]

Nat. Photon. (2)

T. D. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photon. 4, 188–193 (2010).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281, 880–887 (2008).
[CrossRef]

Opt. Express (12)

B. P. Cumming, M. D. Turner, G. E. Schroder-Turk, S. Debbarma, B. Luther-Davies, and M. Gu, “Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass,” Opt. Express 22, 689–698 (2014).
[CrossRef] [PubMed]

R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18, 17059–17065 (2010).
[CrossRef] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18, 24809–24824 (2010).
[CrossRef] [PubMed]

R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express 19, 24122–24128 (2011).
[CrossRef] [PubMed]

A. Jesacher, G. D. Marshall, T. Wilson, and M. J. Booth, “Adaptive optics for direct laser writing with plasma emission aberration sensing,” Opt. Express 18, 656–661 (2010).
[CrossRef] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[CrossRef] [PubMed]

N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express 15, 12395–12408 (2007).
[CrossRef] [PubMed]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19, 9419–9425 (2011).
[CrossRef] [PubMed]

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express 20, 24949–24956 (2012).
[CrossRef] [PubMed]

A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18, 21090–21099 (2010).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16, 5481–5492 (2008).
[CrossRef] [PubMed]

P. S. Salter and M. J. Booth, “Focussing over the edge: adaptive subsurface laser fabrication up to the sample face,” Opt. Express 20, 19978–19989 (2012).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).
[CrossRef] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Aberration generated during focusing by refraction at an interface. (b) The pupil phase corresponding to the aberration, for a 0.75 NA lens focusing from air (n1 = 1) into fused silica (n2 = 1.45) at λ = 790 nm to a depth of dnom = 100 μm. (c) The phase from (b) with the defocus element removed. (d) A plot showing the ratio of nominal to actual focusing depth as a function of objective NA.

Fig. 2
Fig. 2

(a) Theoretical plot of the maximum focal depth dmax that can be compensated for aberrations in our system as a function of NA, when focusing from air (n1 = 1) into fused silica (n2 = 1.45) at λ = 790 nm. (b) The associated phase pattern to be displayed on the SLM at NA = 0.95, when dmax = 120 μm. The inset illustrates the large phase gradients at the edge of the pupil, which are at the limit of the SLM capabilities. (c) A plot of the SLM phase along the red line shown in (b).

Fig. 3
Fig. 3

The experimental system. All lenses are achromatic doublets. The focal lengths of L1 and L2 are chosen to image the SLM onto the pupil of a particular objective lens with optimum magnification. The phase pattern shown was diplayed on the SLM to remove all system induced aberrations.

Fig. 4
Fig. 4

Single-focus fabrication at a depths of 0.75 mm (a)–(c) and 2.4 mm (d)–(f) in fused silica, with laser pulses incident along the positive z direction, using the 0.5 NA objective. Each microstructure was created by 5 consecutive pulses, with energy as indicated. The scale bar represents 10 μm in all images. The features shown in (b) and (e) were fabricated using the phase patterns shown in (a) and (d), respectively, to compensate the depth dependent spherical aberration. The features shown in (c) and (f) were generated without any aberration compensation. The dashed line indicates the same z plane for image pairs (b), (c) and (e), (f). In (b) and (c) a plot of the theoretically predicted intensity distribution at focus is also included with the same spatial scale as the experimental images.

Fig. 5
Fig. 5

(a) Holograms used without (a1) and with (a2) aberration correction. Parallel fabrication with aberration correction at actual depth of 0.15 mm (b) and 2.4 mm (c) in fused silica. Both the structures were fabricated by ten consecutive pulses of energy 19 μJ. The focussed laser pulses were incident along the positive z direction. (d) Parallel fabrication at a depth of 2.4 mm in fused silica without aberration correction, using ten consecutive pulses of energy 57 μJ.

Fig. 6
Fig. 6

(a) Phase pattern used to compensate aberrations focussing to a depth of 1.1 mm in fused silica at NA=0.75 to fabricate the single shot shown in (b) using a pulse energy of 0.2 μJ. (c) Single point features fabricated with no aberration compensation, with pulse energies as indicated. (d) Fabrication of continuous features at a depth of 2 mm with (d1 and d2) and without aberration compensation (d3 and d4).

Fig. 7
Fig. 7

Parallel multi-foci fabrication with a 0.75 NA objective and aberration correction. (a), (b) 196 voxels fabricated simultaneously at a depth of 150 μm. (c), (d) 27 voxels fabricated simultaneously at a depth of 500 μm. The pulses were incident in the z direction.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ SA ( ρ ) = 2 π d nom λ ( n 2 2 ( NA ρ ) 2 n 1 2 ( NA ρ ) 2 )
ϕ ^ SA ( ρ ) = ϕ SA ϕ SA , D n 2 D n 2 , D n 2 D n 2
X , Y = X Y ρ d ρ d θ
D n 2 ( ρ ) = 2 π d nom λ n 2 2 ( NA ρ ) 2
ϕ ^ SA ( ρ ) = 2 π d nom s λ ( s n 1 2 ( NA ρ ) 2 n 2 2 ( NA ρ ) 2 )
d act = d nom / s = d nom ( 1 + ϕ SA , D n 2 D n 2 , D n 2 )
g max = d nom g = d nom [ d ( ϕ ^ SA / d nom ) d ρ ] ρ = 1
= d nom 2 π NA 2 λ s ( 1 n 2 2 NA 2 s n 1 2 NA 2 )
d max = π t g s

Metrics