Abstract

We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps.

Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Haitz, A. Goetzberger, R. M. Scarlett, and W. Shockley, “Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas,” J. Appl. Phys. 34, 1581 (1963).
    [CrossRef]
  2. A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, “Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions,” J. Appl. Phys. 34, 1591 (1963).
    [CrossRef]
  3. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
    [CrossRef]
  4. R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985).
    [CrossRef]
  5. A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
    [CrossRef]
  6. E. Charbon and S. Donati, “SPAD sensors come of age,” Opt. Photonics News 21, 34–41 (2010).
    [CrossRef]
  7. M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).
  8. A. P. Singh, J. W. Krieger, J. Buchholz, E. Charbon, J. Langowski, and T. Wohland, “The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy,” Opt. Express 21, 8652–8668 (2013).
    [CrossRef] [PubMed]
  9. S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012).
    [CrossRef]
  10. C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256×64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20, 11863–11881 (2012).
    [CrossRef] [PubMed]
  11. L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
    [CrossRef]
  12. J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser raman spectroscopy,” Opt. Lett. 36, 3672–3674 (2011).
    [CrossRef] [PubMed]
  13. R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
    [CrossRef]
  14. E. S. Harmon, M. Naydenkov, and J. T. Hyland, “Compound semiconductor SPAD arrays,” Proc. SPIE 8727, 87270N (2013).
    [CrossRef]
  15. E. Charbon and M. W. Fishburn, Monolithic Single-Photon Avalanche Diodes: SPADs (Springer, 2011), chap. 7, pp. 123–156.
  16. Y. Maruyama and E. Charbon, “A time-gated 128×128 CMOS SPAD array for on-chip fluorescence detection,” Proc. Intl. Image Sensor Workshop (IISW) (2011).
  17. R. J. Walker, E. A. G. Webster, J. Li, N. Massari, and R. Henderson, “High fill factor digital silicon photomultiplier structures in 130nm CMOS imaging technology,” IEEE NSS/MIC (2012).
  18. S. Donati, G. Martini, and M. Norgia, “Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits,” Opt. Express 15, 18066–18075 (2007).
    [CrossRef] [PubMed]
  19. C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).
  20. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
    [CrossRef] [PubMed]
  21. M. Motoyoshi, “Through-silicon via (TSV),” Proc. IEEE 97, 43–48 (2009).
    [CrossRef]
  22. S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
    [CrossRef]
  23. M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
    [CrossRef]
  24. R. M. Clegg, Fluorescence Imaging Spectroscopy and Microscopy (John Wiley & Sons, 1996).
  25. K. Suhling, “Fluorescence lifetime imaging,” in “Cell Imaging,”, D. Stephens, ed. (Scion Publishing, Bloxham, 2006).
  26. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
    [CrossRef] [PubMed]
  27. R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
    [CrossRef] [PubMed]
  28. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), p. 954.
  29. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010).
    [CrossRef]
  30. W. Wei, G. Xie, A. Dang, and H. Guo, “High-speed and bias-free optical random number generator,” IEEE Photonics Technol. Lett. 24, 437–439 (2012).
    [CrossRef]
  31. NIST, “A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications,” Pub 800-22 rev1a (2010).

2014

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
[CrossRef] [PubMed]

2013

2012

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
[CrossRef] [PubMed]

W. Wei, G. Xie, A. Dang, and H. Guo, “High-speed and bias-free optical random number generator,” IEEE Photonics Technol. Lett. 24, 437–439 (2012).
[CrossRef]

C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, and M. Kagami, “Design and characterization of a 256×64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor,” Opt. Express 20, 11863–11881 (2012).
[CrossRef] [PubMed]

S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012).
[CrossRef]

2011

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser raman spectroscopy,” Opt. Lett. 36, 3672–3674 (2011).
[CrossRef] [PubMed]

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

2010

E. Charbon and S. Donati, “SPAD sensors come of age,” Opt. Photonics News 21, 34–41 (2010).
[CrossRef]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010).
[CrossRef]

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
[CrossRef] [PubMed]

2009

M. Motoyoshi, “Through-silicon via (TSV),” Proc. IEEE 97, 43–48 (2009).
[CrossRef]

2008

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

2007

2003

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

1985

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

1981

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

1963

R. H. Haitz, A. Goetzberger, R. M. Scarlett, and W. Shockley, “Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas,” J. Appl. Phys. 34, 1581 (1963).
[CrossRef]

A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, “Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions,” J. Appl. Phys. 34, 1591 (1963).
[CrossRef]

Achilefu, S.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
[CrossRef] [PubMed]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Aoyagi, I.

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010).
[CrossRef]

Bellisai, S.

S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012).
[CrossRef]

Berezin, M. Y.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
[CrossRef] [PubMed]

Besse, P. A.

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

Blacksberg, J.

Borghetti, F.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Braga, L.

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

Bronzi, D.

S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012).
[CrossRef]

Buchholz, J.

Charbon, E.

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22, 4202–4213 (2014).
[CrossRef] [PubMed]

A. P. Singh, J. W. Krieger, J. Buchholz, E. Charbon, J. Langowski, and T. Wohland, “The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy,” Opt. Express 21, 8652–8668 (2013).
[CrossRef] [PubMed]

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser raman spectroscopy,” Opt. Lett. 36, 3672–3674 (2011).
[CrossRef] [PubMed]

E. Charbon and S. Donati, “SPAD sensors come of age,” Opt. Photonics News 21, 34–41 (2010).
[CrossRef]

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

E. Charbon and M. W. Fishburn, Monolithic Single-Photon Avalanche Diodes: SPADs (Springer, 2011), chap. 7, pp. 123–156.

Y. Maruyama and E. Charbon, “A time-gated 128×128 CMOS SPAD array for on-chip fluorescence detection,” Proc. Intl. Image Sensor Workshop (IISW) (2011).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Chen, J.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Chen, K.-N.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Clegg, R. M.

R. M. Clegg, Fluorescence Imaging Spectroscopy and Microscopy (John Wiley & Sons, 1996).

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010).
[CrossRef]

Colyer, R. A.

R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
[CrossRef] [PubMed]

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

Cova, S.

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Dang, A.

W. Wei, G. Xie, A. Dang, and H. Guo, “High-speed and bias-free optical random number generator,” IEEE Photonics Technol. Lett. 24, 437–439 (2012).
[CrossRef]

Donati, S.

Entwistle, M.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Fishburn, M. W.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

E. Charbon and M. W. Fishburn, Monolithic Single-Photon Avalanche Diodes: SPADs (Springer, 2011), chap. 7, pp. 123–156.

Gasparini, L.

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

Gersbach, M.

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Goetzberger, A.

R. H. Haitz, A. Goetzberger, R. M. Scarlett, and W. Shockley, “Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas,” J. Appl. Phys. 34, 1581 (1963).
[CrossRef]

A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, “Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions,” J. Appl. Phys. 34, 1591 (1963).
[CrossRef]

Gösch, M.

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

Grant, L.

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

Guerrieri, F.

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

Guo, H.

W. Wei, G. Xie, A. Dang, and H. Guo, “High-speed and bias-free optical random number generator,” IEEE Photonics Technol. Lett. 24, 437–439 (2012).
[CrossRef]

Haitz, R. H.

A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, “Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions,” J. Appl. Phys. 34, 1591 (1963).
[CrossRef]

R. H. Haitz, A. Goetzberger, R. M. Scarlett, and W. Shockley, “Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas,” J. Appl. Phys. 34, 1581 (1963).
[CrossRef]

Harmon, E. S.

E. S. Harmon, M. Naydenkov, and J. T. Hyland, “Compound semiconductor SPAD arrays,” Proc. SPIE 8727, 87270N (2013).
[CrossRef]

Henderson, R.

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

R. J. Walker, E. A. G. Webster, J. Li, N. Massari, and R. Henderson, “High fill factor digital silicon photomultiplier structures in 130nm CMOS imaging technology,” IEEE NSS/MIC (2012).

Henderson, R. K.

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Hyland, J. T.

E. S. Harmon, M. Naydenkov, and J. T. Hyland, “Compound semiconductor SPAD arrays,” Proc. SPIE 8727, 87270N (2013).
[CrossRef]

Ito, K.

Itzler, M. A.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Jiang, X.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Kagami, M.

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010).
[CrossRef]

Kato, S.

Koester, S. J.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Krieger, J. W.

La Tulipe, J. D. C.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), p. 954.

Langowski, J.

Lasser, T.

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

Li, D.-U.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Li, J.

R. J. Walker, E. A. G. Webster, J. Li, N. Massari, and R. Henderson, “High fill factor digital silicon photomultiplier structures in 130nm CMOS imaging technology,” IEEE NSS/MIC (2012).

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Martini, G.

Maruyama, Y.

J. Blacksberg, Y. Maruyama, E. Charbon, and G. R. Rossman, “Fast single-photon avalanche diode arrays for laser raman spectroscopy,” Opt. Lett. 36, 3672–3674 (2011).
[CrossRef] [PubMed]

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

Y. Maruyama and E. Charbon, “A time-gated 128×128 CMOS SPAD array for on-chip fluorescence detection,” Proc. Intl. Image Sensor Workshop (IISW) (2011).

Massari, N.

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

R. J. Walker, E. A. G. Webster, J. Li, N. Massari, and R. Henderson, “High fill factor digital silicon photomultiplier structures in 130nm CMOS imaging technology,” IEEE NSS/MIC (2012).

Matsubara, H.

Mcdonald, B.

A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, “Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions,” J. Appl. Phys. 34, 1591 (1963).
[CrossRef]

McIntyre, R. J.

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

Michalet, X.

R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
[CrossRef] [PubMed]

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

Motoyoshi, M.

M. Motoyoshi, “Through-silicon via (TSV),” Proc. IEEE 97, 43–48 (2009).
[CrossRef]

Naydenkov, M.

E. S. Harmon, M. Naydenkov, and J. T. Hyland, “Compound semiconductor SPAD arrays,” Proc. SPIE 8727, 87270N (2013).
[CrossRef]

Niclass, C.

Norgia, M.

Owens, M.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Patel, K.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Pavia, J. M.

Perenzoni, M.

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

Popovic, R. S.

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

Purushothaman, S.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Rana, N.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Rangwala, S.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010).
[CrossRef]

Richardson, J.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

Rigler, R.

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

Rochas, A.

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010).
[CrossRef]

Rossman, G. R.

Scalia, G.

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

Scarlett, R. M.

A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, “Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions,” J. Appl. Phys. 34, 1591 (1963).
[CrossRef]

R. H. Haitz, A. Goetzberger, R. M. Scarlett, and W. Shockley, “Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas,” J. Appl. Phys. 34, 1581 (1963).
[CrossRef]

Serov, A.

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

Shi, L.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Shockley, W.

R. H. Haitz, A. Goetzberger, R. M. Scarlett, and W. Shockley, “Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas,” J. Appl. Phys. 34, 1581 (1963).
[CrossRef]

Siegmund, O. H. W.

R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
[CrossRef] [PubMed]

Singh, A. P.

Slomkowski, K.

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Soga, M.

Sprogis, E. J.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Stoppa, D.

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Suhling, K.

K. Suhling, “Fluorescence lifetime imaging,” in “Cell Imaging,”, D. Stephens, ed. (Scion Publishing, Bloxham, 2006).

Tisa, S.

S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012).
[CrossRef]

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

Tremsin, A. S.

R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
[CrossRef] [PubMed]

Trimananda, R.

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

Vallerga, J. V.

R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
[CrossRef] [PubMed]

Veerappan, C.

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Villa, F.

S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012).
[CrossRef]

Villa, F. A.

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

Walker, R.

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Walker, R. J.

R. J. Walker, E. A. G. Webster, J. Li, N. Massari, and R. Henderson, “High fill factor digital silicon photomultiplier structures in 130nm CMOS imaging technology,” IEEE NSS/MIC (2012).

Webster, E. A. G.

R. J. Walker, E. A. G. Webster, J. Li, N. Massari, and R. Henderson, “High fill factor digital silicon photomultiplier structures in 130nm CMOS imaging technology,” IEEE NSS/MIC (2012).

Wei, W.

W. Wei, G. Xie, A. Dang, and H. Guo, “High-speed and bias-free optical random number generator,” IEEE Photonics Technol. Lett. 24, 437–439 (2012).
[CrossRef]

Weiss, S.

R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
[CrossRef] [PubMed]

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

Wohland, T.

Wolf, M.

Wordeman, M. R.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Xie, G.

W. Wei, G. Xie, A. Dang, and H. Guo, “High-speed and bias-free optical random number generator,” IEEE Photonics Technol. Lett. 24, 437–439 (2012).
[CrossRef]

Young, A. M.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Yu, R. R.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

Zappa, F.

S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012).
[CrossRef]

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

Chem. Rev.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641–2684 (2010).
[CrossRef] [PubMed]

IBM J. Res. Dev.

S. J. Koester, A. M. Young, R. R. Yu, S. Purushothaman, K.-N. Chen, J. D. C. La Tulipe, N. Rana, L. Shi, M. R. Wordeman, and E. J. Sprogis, “Wafer-level 3D integration technology,” IBM J. Res. Dev. 52, 583–597 (2008).
[CrossRef]

IEEE J. Solid-State Circuits

L. Braga, L. Gasparini, L. Grant, R. Henderson, N. Massari, M. Perenzoni, D. Stoppa, and R. Walker, “A fully digital 8 × 16 SiPM array for PET applications with per-pixel TDCs and real-time energy output,” IEEE J. Solid-State Circuits 49, 301–314 (2014).
[CrossRef]

IEEE Photonics Technol. Lett.

A. Rochas, M. Gösch, A. Serov, P. A. Besse, R. S. Popovic, T. Lasser, and R. Rigler, “First fully integrated 2-D array of single-photon detectors in standard CMOS technology,” IEEE Photonics Technol. Lett. 15, 963(2003).
[CrossRef]

W. Wei, G. Xie, A. Dang, and H. Guo, “High-speed and bias-free optical random number generator,” IEEE Photonics Technol. Lett. 24, 437–439 (2012).
[CrossRef]

J. Appl. Phys.

R. H. Haitz, A. Goetzberger, R. M. Scarlett, and W. Shockley, “Avalanche effects in silicon p-n junctions. I. Localized photomultiplication studies on microplasmas,” J. Appl. Phys. 34, 1581 (1963).
[CrossRef]

A. Goetzberger, R. M. Scarlett, R. H. Haitz, and B. Mcdonald, “Avalanche effects in silicon p-n junctions. II. Structurally perfect junctions,” J. Appl. Phys. 34, 1591 (1963).
[CrossRef]

J. Biomed. Opt.

R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, and X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17, 016008 (2012).
[CrossRef] [PubMed]

Measurement

R. J. McIntyre, “Recent developments in silicon avalanche photodiodes,” Measurement 3, 146–152 (1985).
[CrossRef]

Nat. Photonics

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4, 58–61 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photonics News

E. Charbon and S. Donati, “SPAD sensors come of age,” Opt. Photonics News 21, 34–41 (2010).
[CrossRef]

Proc. IEEE

M. Motoyoshi, “Through-silicon via (TSV),” Proc. IEEE 97, 43–48 (2009).
[CrossRef]

Proc. SPIE

R. A. Colyer, G. Scalia, F. A. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” Proc. SPIE 7905, 790503 (2011).
[CrossRef]

E. S. Harmon, M. Naydenkov, and J. T. Hyland, “Compound semiconductor SPAD arrays,” Proc. SPIE 8727, 87270N (2013).
[CrossRef]

S. Bellisai, F. Villa, S. Tisa, D. Bronzi, and F. Zappa, “Indirect time-of-flight 3D ranging based on SPADs,” Proc. SPIE 8268, 82681C (2012).
[CrossRef]

M. Entwistle, M. A. Itzler, J. Chen, M. Owens, K. Patel, X. Jiang, K. Slomkowski, and S. Rangwala, “Geiger-mode APD camera system for single-photon 3D LADAR imaging,” Proc. SPIE 8375, 83750D (2012).
[CrossRef]

Rev. Sci. Instrum.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Other

M. Gersbach, R. Trimananda, Y. Maruyama, M. W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, and E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor,” SPIE Optics+Photonics, Single Photon Imaging Conference (OP111), SPIE Paper 7780C-58 (2010).

E. Charbon and M. W. Fishburn, Monolithic Single-Photon Avalanche Diodes: SPADs (Springer, 2011), chap. 7, pp. 123–156.

Y. Maruyama and E. Charbon, “A time-gated 128×128 CMOS SPAD array for on-chip fluorescence detection,” Proc. Intl. Image Sensor Workshop (IISW) (2011).

R. J. Walker, E. A. G. Webster, J. Li, N. Massari, and R. Henderson, “High fill factor digital silicon photomultiplier structures in 130nm CMOS imaging technology,” IEEE NSS/MIC (2012).

R. M. Clegg, Fluorescence Imaging Spectroscopy and Microscopy (John Wiley & Sons, 1996).

K. Suhling, “Fluorescence lifetime imaging,” in “Cell Imaging,”, D. Stephens, ed. (Scion Publishing, Bloxham, 2006).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), p. 954.

NIST, “A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications,” Pub 800-22 rev1a (2010).

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” IEEE Intl. Solid-State Circuits Conference (ISSCC) (2011).

Supplementary Material (1)

» Media 1: MP4 (19334 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Cross-section of the SPAD structure fabricated in a 0.35 μm high-voltage CMOS process. A p+ − deep n-well junction is used to create the multiplication region with a p-well guard ring to prevent premature edge breakdown.

Fig. 2
Fig. 2

(a) Pixel photon detection probability (PDP) and array photon detection efficiency (PDE) in the range of 350 nm to 950 nm for various excess bias voltage. (b) SPAD dark count rate (DCR) distribution as a function of excess bias voltage at room temperature. The hottest 1% of the pixels (reaching 2 MHz) were removed from this plot.

Fig. 3
Fig. 3

Transistor level schematic of the pixel circuit. The SPAD is shown together with its junction capacitance. T12 can be used for passive quenching and separates the SPAD from ground. Transistors T1 and T2 control the SPAD bias and are used to switch the SPAD on and off. T4 controls the access to the NMOS-latch formed by T7 and T8, loaded by T5 and T6. T9 is used to reset the storage latch, previously set by T3. Finally T10 is used to transfer the memory value to the output line through the row select transistor T11.

Fig. 4
Fig. 4

SwissSPAD die micrograph with the SPAD-array in the center and logic on three sides. Two sensors can be abutted with a gap less than 6 pixels wide for a combined resolution of 1/8 Megapixel. The inset is a detail of the SPAD cells.

Fig. 5
Fig. 5

Chip carrier PCB with two chips bonded side by side for simultaneous operation at doubled resolution. The gap is less than 6 pixels wide.

Fig. 6
Fig. 6

A block-level representation of our imaging system. The part on the right depicts the interior of the SwissSPAD chip which is built around the central array of 128 × 512 pixels. The power supplies and gating signals are shared among all pixels, while the selection and reset signals are row-by-row. The pixel outputs are connected column-by-column with pullup circuits on one end and data registers and output multiplexers on the other end. An FPGA, depicted on the left, is used to generate the control signals and receive the data generated by the pixels.

Fig. 7
Fig. 7

Timing diagram for pulsed illumination imaging. The gating signals (Off, ReChg, GATE) are derived from the reference clock supplied by the illumination system (here a picosecond laser with 40 MHz repetition rate). Output enable (OE) and reset (RS) signals are used to control the chip readout.

Fig. 8
Fig. 8

(a) Typical pixel intensity response obtained by sliding the detection gate over the whole pulsed laser period. In this representation the falling (second) edge corresponds to the start of the detection where the SPAD is turned on. This response is analysed as bilevel waveform according to The IEEE Standard on Transitions, Pulses, and Related Waveforms, Std-181-2003. (b) Distribution (for all pixels) of the rise and fall times of the waveform shown in a. While the rising edge is very short (∼20 ps), the falling edge is distributed around 300 ps. There is no apparent pattern for the distribution over the array.

Fig. 9
Fig. 9

(a) Distribution of the gate length for the pulse specification used in the measurement of Fig. 8 over the full array. The gate length increases from top to bottom and from the center to the left and right edges in a systematic way. The total variation is about 500 ps for the pattern of gating signals used in these measurements. (b) Distribution of the gate position over the full array.

Fig. 10
Fig. 10

Scanning electron microscope image of the microlens array with alignment mark deposited on SwissSPAD. Square lenses optimized for collimated light were deposited by CSEM Muttenz, Switzerland.

Fig. 11
Fig. 11

Concentration factor as ratio of light intensity of a chip with microlenses compared to a chip without microlenses. The objective lens is illuminated by uncollimated white light at a fixed intensity and measurements for increasing f-numbers are performed. As the f-number increases, the resulting concentration factor increases as well, confirming the effectiveness of our microlens array.

Fig. 12
Fig. 12

Five intensity images of a scene acquired with 1-, 2-, 4-, 8- and 16-bit intensity resolution. The electron beam tracing the sine wave can be clearly distinguished at the highest frame-rate of 156 kfps with 1-bit intensity resolution. The video file ( Media 1) shows image sequences from 16-bit to 1-bit.

Fig. 13
Fig. 13

Relation between maximum frame rate and bits per final frame. The maximum frame-rate of 156,250 fps is attained for 1-bit images. The processed data rate for different bitdepths and the fixed data rate of USB 2.0 are added to underline the need for high-bandwidth connections to the ultimate consumer.

Fig. 14
Fig. 14

FLIM recording of different fluorescent samples using a 68 MHz (period: 14.6 ns), 532 nm wavelength laser with a 8 ps pulse duration.

Tables (3)

Tables Icon

Table 1 SwissSPAD performance parameters.

Tables Icon

Table 2 FLIM lifetime data.

Tables Icon

Table 3 Results of the NIST tests applied to a sequence generated with a LED pulse length of 100 ns and an excess bias voltage of 2.8 V. The tests were run on the data from the de-biasing filter.

Metrics