Abstract

In this paper, we propose a simple metal micro-nano structure having the character of nonreciprocal optical zero-order transmission. The structure is a single conical air hole (CAH) in an Ag film whose optical absorption with geometric asymmetry breaks the time reversal symmetry of the electromagnetic field. By comparing the transmissions of Ag CAH with those of ideal conductor (IC) CAH, three effects of Ag CAH, including diffraction, Fabry-Perot-like (FPL) resonance and localized surface plasmon (LSP) resonance, are analyzed and discussed. Under optimized conditions, we find that the ratio of forward transmission to backward one can be larger than 9 at a proper wavelength in visible range. This kind of Ag CAH is expected to have the potential served as all-optical diode.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
    [CrossRef]
  2. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thinfilm nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324 (1995).
    [CrossRef]
  3. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
    [CrossRef] [PubMed]
  4. M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
    [CrossRef]
  5. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 037602 (2005).
    [CrossRef] [PubMed]
  6. S. Mujumdar and H. Ramachandran, “Use of a graded gain random amplifier as an optical diode,” Opt. Lett. 26(12), 929–931 (2001).
    [CrossRef] [PubMed]
  7. M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056611 (2006).
    [CrossRef] [PubMed]
  8. A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
    [CrossRef]
  9. F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008).
    [CrossRef]
  10. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express 19(27), 26948–26955 (2011).
    [CrossRef] [PubMed]
  11. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
    [CrossRef] [PubMed]
  12. S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
    [CrossRef]
  13. J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y. X. Fan, and H. T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36(10), 1905–1907 (2011).
    [CrossRef] [PubMed]
  14. M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Zapata Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839–841 (2013).
    [CrossRef] [PubMed]
  15. H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
    [CrossRef]
  16. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  17. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  18. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  19. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  20. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
    [CrossRef] [PubMed]
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [CrossRef]
  22. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domian Method (Artech House INC, Norwood, 2000).
  23. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  24. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]

2014 (1)

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[CrossRef]

2013 (1)

2011 (3)

2010 (2)

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

2009 (2)

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[CrossRef]

2008 (1)

F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008).
[CrossRef]

2006 (1)

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056611 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 037602 (2005).
[CrossRef] [PubMed]

2004 (2)

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

2001 (2)

S. Mujumdar and H. Ramachandran, “Use of a graded gain random amplifier as an optical diode,” Opt. Lett. 26(12), 929–931 (2001).
[CrossRef] [PubMed]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[CrossRef]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef] [PubMed]

1995 (1)

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thinfilm nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324 (1995).
[CrossRef]

Assanto, G.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[CrossRef]

Beauvillain, P.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Biancalana, F.

F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008).
[CrossRef]

Bloemer, M. J.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thinfilm nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324 (1995).
[CrossRef]

Bowden, C. M.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thinfilm nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324 (1995).
[CrossRef]

Caglayan, H.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

Cakmakyapan, S.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

Checoury, X.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Chen, J.

Cheng, C.

Dagens, B.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Djurišic, A. B.

Dong, A. G.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[CrossRef]

Dowling, J. P.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thinfilm nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324 (1995).
[CrossRef]

Ebbesen, T. W.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Elazar, J. M.

Enoch, S.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Fan, Y. X.

Fan, Z. J.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[CrossRef]

Feise, M. W.

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 037602 (2005).
[CrossRef] [PubMed]

Fejer, M. M.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[CrossRef]

Gallo, K.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[CrossRef]

Gao, H.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gralak, B.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Hao, H. Y.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056611 (2006).
[CrossRef] [PubMed]

Hwang, J.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Ishikawa, K.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Kang, M.

Kivshar, Y. S.

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 037602 (2005).
[CrossRef] [PubMed]

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kotynski, R.

Kuipers, L.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, Z. Y.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Liu, D. H.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056611 (2006).
[CrossRef] [PubMed]

Lourtioz, J. M.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Lusakowski, J.

Magdenko, L.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Majewski, M. L.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

Mujumdar, S.

Nishimura, S.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Ozbay, E.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[CrossRef]

Park, B.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Postava, K.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Rakic, A. D.

Ramachandran, H.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056611 (2006).
[CrossRef] [PubMed]

Scalora, M.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thinfilm nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324 (1995).
[CrossRef]

Segerink, F. B.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Serebryannikov, A. E.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[CrossRef]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[CrossRef] [PubMed]

A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[CrossRef]

Shadrivov, I. V.

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 037602 (2005).
[CrossRef] [PubMed]

Smigaj, W.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Song, M. H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Stolarek, M.

Szoplik, T.

Takanishi, Y.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Takezoe, H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tocci, M. D.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thinfilm nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324 (1995).
[CrossRef]

Toyooka, T.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

van Hulst, N. F.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Vanwolleghem, M.

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Wang, C.

Wang, H. T.

White, K. R.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056611 (2006).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, J. W.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Xu, J.

Yavorskiy, D.

Zapata Rodríguez, C. J.

Zheng, Z.

Zheng, Z. Y.

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[CrossRef]

Zhou, C. Z.

Appl. Opt. (1)

Appl. Phys. B (1)

H. Gao, Z. Y. Zheng, H. Y. Hao, A. G. Dong, Z. J. Fan, and D. H. Liu, “Mechanism of optical unidirectional transmission in subwavelength dual-metal gratings,” Appl. Phys. B 114(3), 401–406 (2014).
[CrossRef]

Appl. Phys. Lett. (3)

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[CrossRef]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314 (2001).
[CrossRef]

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thinfilm nonlinear optical diode,” Appl. Phys. Lett. 66(18), 2324 (1995).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[CrossRef]

J. Appl. Phys. (1)

F. Biancalana, “All-optical diode action with quasiperiodic photonic crystals,” J. Appl. Phys. 104(9), 093113 (2008).
[CrossRef]

Nat. Mater. (1)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions,” Nat. Mater. 4(5), 383–387 (2005).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (2)

A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[CrossRef]

M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens, P. Beauvillain, and J. M. Lourtioz, “Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals,” Phys. Rev. B 80(12), 121102 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, “Bistable diode action in left-handed periodic structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 037602 (2005).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5), 056611 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other (1)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domian Method (Artech House INC, Norwood, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic of a single CAH in an Ag film.

Fig. 2
Fig. 2

(a)-(h): Normalized zero-order transmission spectra for different hole ends. (a)-(d): RS = 100 nm, t = 1000 nm, and RL is chosen to be 400 nm, 500 nm, 600 nm, and 700 nm respectively. (e)-(h): RL = t = 1000 nm, and RS is chosen to be 400 nm, 500 nm, 600 nm, and 700 nm respectively. (j)-(l): The electric field distributions when a 550nm plane wave is incident upon the Ag CAH, where (i) and (j) correspond to (a), and (k) and (l) to (e). (m): The normal reflectivity of Ag (dark blue) and ideal conductor (red) surfaces.

Fig. 3
Fig. 3

The electric field distributions for wavelengths of 450 nm, 550 nm, 650 nm, and 750 nm being incident upon the large ends of IC CAH [(a)-(d)] and Ag CAH [(e)-(h)], respectively. The structure is the same as that for Fig. 2(a).

Fig. 4
Fig. 4

Normalized zero-order transmission spectra for different film thicknesses. (a)-(d): RL = 400 nm, RS = 100 nm, and t is chosen to be 500 nm, 1000 nm, 1500 nm, and 2000 nm respectively. (e)-(h): RL = 1000 nm, RS = 400 nm, and t is chosen to be 500 nm, 1000 nm, 1500 nm, and 2000 nm respectively.

Fig. 5
Fig. 5

Normalized zero-order transmission spectra for different enlarged factors. Series (a)-(d) correspond to Fig. 2(a), and series (e)-(h) to Fig. 2(e). The structurally enlarged factors for either of these two series are 1.0, 1.3, 1.5, and 2.0, respectively.

Metrics