Abstract

We propose, numerically analyze and experimentally demonstrate a novel refractive index sensor specialized for low index sensing. The device is based on a directional coupler architecture implemented in a single microstructured polymer optical fiber incorporating two waveguides within it: a single-mode core and a satellite waveguide consisting of a hollow high-index ring. This hollow channel is filled with fluid and the refractive index of the fluid is detected through changes to the wavelength at which resonant coupling occurs between the two waveguides. The sensor design was optimized for both higher sensitivity and lower detection limit, with simulations and experiments demonstrating a sensitivity exceeding 1.4 × 103 nm per refractive index unit. Simulations indicate a detection limit of ~2 × 10−6 refractive index units is achievable. We also numerically investigate the performance for refractive index changes localized at the surface of the holes, a case of particular importance for biosensing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis

Boris T. Kuhlmey, Stéphane Coen, and Sahand Mahmoodian
Opt. Express 17(18) 16306-16321 (2009)

Ultrasensitive photonic crystal fiber refractive index sensor

Darran K. C. Wu, Boris T. Kuhlmey, and Benjamin J. Eggleton
Opt. Lett. 34(3) 322-324 (2009)

Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St.J. Russell
Opt. Express 19(9) 8200-8207 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors, 2nd ed. (CRC Press, 2008).
  2. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
    [Crossref]
  3. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  4. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
    [Crossref] [PubMed]
  5. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  6. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [Crossref] [PubMed]
  7. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref] [PubMed]
  8. G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
    [Crossref] [PubMed]
  9. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
    [Crossref]
  10. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
    [Crossref] [PubMed]
  11. Y. Gong, T. Zhao, Y.-J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express 18(15), 15844–15852 (2010).
    [Crossref] [PubMed]
  12. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
    [Crossref] [PubMed]
  13. D. K. C. Wu, K. J. Lee, V. Pureur, and B. T. Kuhlmey, “Performance of Refractive Index Sensors Based On Directional Couplers in Photonic Crystal Fibers,” J. Lightwave Technol. 31(22), 3500–3510 (2013).
    [Crossref]
  14. B. Sun, M.-Y. Chen, Y.-K. Zhang, J.-C. Yang, J.-Q. Yao, and H.-X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express 19(5), 4091–4100 (2011).
    [Crossref] [PubMed]
  15. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  16. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [Crossref] [PubMed]
  17. M. Yang, D. N. Wang, Y. Wang, and C. Liao, “Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber,” Opt. Express 18(3), 2183–2189 (2010).
    [Crossref] [PubMed]
  18. C. Wang and C. Herath, “High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber,” Opt. Lett. 35(10), 1629–1631 (2010).
    [Crossref] [PubMed]
  19. M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express 19(11), 10471–10484 (2011).
    [Crossref] [PubMed]
  20. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
    [Crossref] [PubMed]
  21. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17(18), 16306–16321 (2009).
    [Crossref] [PubMed]
  22. S. G. Leon-Saval, R. Lwin, and A. Argyros, “Multicore composite single-mode polymer fiber,” Opt. Express 20(1), 141–148 (2012).
    [Crossref] [PubMed]
  23. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27(11), 1571–1579 (2009).
    [Crossref]
  24. http://www.zeonex.com/datasheets.asp
  25. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [Crossref]
  26. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  27. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19(10), 2331–2340 (2002).
    [Crossref]
  28. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express 18(25), 25556–25566 (2010).
    [Crossref] [PubMed]
  29. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  30. R. Reiter, H. Motschmann, and W. Knoll, “Ellipsometric characterization of streptavidin binding to biotin-functionalized lipid monolayers at the water/air interface,” Langmuir 9(9), 2430–2435 (1993).
    [Crossref]
  31. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
    [Crossref] [PubMed]
  32. H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
    [Crossref]
  33. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
    [Crossref] [PubMed]
  34. M. Golic, K. Walsh, and P. Lawson, “Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature,” Appl. Spectrosc. 57(2), 139–145 (2003).
    [Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (4)

2010 (6)

2009 (5)

2008 (4)

2007 (2)

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
[Crossref]

2006 (1)

2005 (3)

2003 (1)

2002 (1)

2000 (1)

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

1996 (1)

1993 (1)

R. Reiter, H. Motschmann, and W. Knoll, “Ellipsometric characterization of streptavidin binding to biotin-functionalized lipid monolayers at the water/air interface,” Langmuir 9(9), 2430–2435 (1993).
[Crossref]

Argyros, A.

Bang, O.

Bentley, W. E.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

Bhatia, V.

Bjarklev, A.

Botten, L. C.

Chen, M.-Y.

Coen, S.

Cooper, K. L.

Cox, F. M.

Cui, H.-X.

Davis, C. C.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

de Sterke, C. M.

DeLisa, M. P.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

Docherty, A.

Eggleton, B. J.

Emiliyanov, G.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fan, X. D.

Frosz, M. H.

Golic, M.

Gong, Y.

Grujic, T.

Guo, Y.

Hassani, A.

Herath, C.

Hoiby, P.

Jensen, J.

Joly, N. Y.

Kanie, T.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Katayama, M.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Knoll, W.

R. Reiter, H. Motschmann, and W. Knoll, “Ellipsometric characterization of streptavidin binding to biotin-functionalized lipid monolayers at the water/air interface,” Langmuir 9(9), 2430–2435 (1993).
[Crossref]

Kuhlmey, B. T.

Large, M. C. J.

Lawson, P.

Lee, H. W.

Lee, K. J.

Leon-Saval, S. G.

Liao, C.

Lwin, R.

Mahmoodian, S.

Markos, C.

Maystre, D.

McCosker, R.

McPhedran, R. C.

Motschmann, H.

R. Reiter, H. Motschmann, and W. Knoll, “Ellipsometric characterization of streptavidin binding to biotin-functionalized lipid monolayers at the water/air interface,” Langmuir 9(9), 2430–2435 (1993).
[Crossref]

Pedersen, L.

Pilevar, S.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

Pureur, V.

Rao, Y.-J.

Reiter, R.

R. Reiter, H. Motschmann, and W. Knoll, “Ellipsometric characterization of streptavidin binding to biotin-functionalized lipid monolayers at the water/air interface,” Langmuir 9(9), 2430–2435 (1993).
[Crossref]

Renversez, G.

Rindorf, L.

Russell, P. St. J.

Scharrer, M.

Schmidt, M. A.

Shibru, H.

Shiloach, M.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sirkis, J. S.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

Skorobogatiy, M.

Stefani, A.

Sun, B.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tazawa, H.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Town, G. E.

Tyagi, H.

Uebel, P.

Vengsarkar, A. M.

Vlachos, K.

Walsh, K.

Wang, A.

Wang, C.

Wang, D. N.

Wang, Y.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

White, T. P.

Wu, D. K. C.

Wu, Y.

Yang, J.-C.

Yang, M.

Yao, J.-Q.

Yuan, W.

Zhang, Y.

Zhang, Y.-K.

Zhang, Z.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

Zhao, T.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Anal. Chem. (1)

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Appl. Spectrosc. (1)

IEEE Sens. J. (1)

W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Langmuir (1)

R. Reiter, H. Motschmann, and W. Knoll, “Ellipsometric characterization of streptavidin binding to biotin-functionalized lipid monolayers at the water/air interface,” Langmuir 9(9), 2430–2435 (1993).
[Crossref]

Opt. Express (12)

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

M. Yang, D. N. Wang, Y. Wang, and C. Liao, “Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber,” Opt. Express 18(3), 2183–2189 (2010).
[Crossref] [PubMed]

B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17(18), 16306–16321 (2009).
[Crossref] [PubMed]

Y. Gong, T. Zhao, Y.-J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express 18(15), 15844–15852 (2010).
[Crossref] [PubMed]

T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express 18(25), 25556–25566 (2010).
[Crossref] [PubMed]

B. Sun, M.-Y. Chen, Y.-K. Zhang, J.-C. Yang, J.-Q. Yao, and H.-X. Cui, “Microstructured-core photonic-crystal fiber for ultra-sensitive refractive index sensing,” Opt. Express 19(5), 4091–4100 (2011).
[Crossref] [PubMed]

C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. St. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
[Crossref] [PubMed]

M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express 19(11), 10471–10484 (2011).
[Crossref] [PubMed]

S. G. Leon-Saval, R. Lwin, and A. Argyros, “Multicore composite single-mode polymer fiber,” Opt. Express 20(1), 141–148 (2012).
[Crossref] [PubMed]

Opt. Lett. (9)

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
[Crossref] [PubMed]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, “Microstructured optical fiber refractive index sensor,” Opt. Lett. 35(6), 856–858 (2010).
[Crossref] [PubMed]

C. Wang and C. Herath, “High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber,” Opt. Lett. 35(10), 1629–1631 (2010).
[Crossref] [PubMed]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[Crossref] [PubMed]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[Crossref] [PubMed]

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref] [PubMed]

Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
[Crossref] [PubMed]

Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

Other (2)

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors, 2nd ed. (CRC Press, 2008).

http://www.zeonex.com/datasheets.asp

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the directional coupler geometry within a polymer fiber. (b) Details of the cross section; (c) Schematic of effective index curves of core and satellite modes and resonance wavelength.
Fig. 2
Fig. 2 (a) Schematic design of the composite core. The intensity profiles of the lowest order modes in (b) composite and circular single-mode cores using (c) Zeonex and (d) PC. All cases shown support two degenerate modes of orthogonal polarization: LP01x and LP01y (or HE11x and HE11y).
Fig. 3
Fig. 3 (a) Schematic design of the satellite waveguide (rin = 2 μm, t = 300 nm). The intensity profiles of four guided modes in the satellite waveguide when the hole coated with a PC ring is filled with low-index analyte (na = 1.333): (b) TM, (c) TE, (d) HE-1 (e) HE-2 modes.
Fig. 4
Fig. 4 (a) Calculated effective index for the core and four satellite modes showing the resonant wavelength, and (b) the coupling length for HE11x-TM mode combination plotted as a function of the center-to-center distance (h) between the core and satellite waveguides. The distance, h, is defined in the inset of Fig. 4(b).
Fig. 5
Fig. 5 (a) Calculated modal intensity overlap in the analyte hole (fsat) for TM and TE modes, and (b) fsat curves for TM mode plotted for different sizes of the analyte hole.
Fig. 6
Fig. 6 (a) Microscope image of the core and analyte channel of the fiber; (b) transmission spectra through the empty fiber (blue), and after infiltration for various concentration of sucrose, as indicated – spectra are offset for readability; (c) Measured wavelength of the dips indicated by red arrows in (b) as a function of refractive index. The error bars reflect the accuracy of the refractometer ( ± 0.0003) and of the OSA ( ± 0.1 nm).

Tables (3)

Tables Icon

Table 1 Coupling lengths for each core-satellite mode combination at the corresponding resonant wavelengths, for h = 10 μm. Only one polarization for each degenerate pair shown.

Tables Icon

Table 2 Detection limits for fiber-based low-index sensing reported in recent publications.

Tables Icon

Table 3 Detection limits for fiber-based protein measurement reported in recent publications.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δnα λ r L c f sat T min (SNR) 0.25 ,
f sat = analyte ε sat (x,y) | E sat (x,y) | 2 dxdy cross secsion ε sat (x,y) | E sat (x,y) | 2 dxdy ,

Metrics