Abstract

We introduce a novel phasorial differential pulse-width pair (PDPP) method for Brillouin optical time-domain analysis (BOTDA) sensors that combines spatial resolution enhancement with increased tolerance to non-local effects. It is based on the subtraction of the complex time-domain traces supplied by a sensor configuration that uses a phase-modulated probe wave and RF demodulation. The fundamentals of the technique are first described theoretically and using numerical simulation of the propagating waves. Then, proof-of-concept experiments demonstrate the measurement of the Brillouin frequency shift distribution over 50-km. The system is shown to withstand large variations of the pump power generated by its interaction with a powerful probe wave along the fiber; hence, highlighting the potential of the PDPP technique to increase the detected signal-to-noise ratio in long-range BOTDA. Moreover, the PDPP is also shown to increase the measurement contrast by allowing the use of relatively long duration pulses while retaining 1-m spatial resolution.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [CrossRef] [PubMed]
  2. Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Appl. Opt. 49(27), 5020–5025 (2010).
    [CrossRef] [PubMed]
  3. R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
    [CrossRef] [PubMed]
  4. A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
    [CrossRef]
  5. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  6. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
    [CrossRef]
  7. A. Motil, O. Danon, Y. Peled, and M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
    [CrossRef]
  8. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express 20(24), 26942–26949 (2012).
    [CrossRef] [PubMed]
  9. J. Urricelqui, M. Sagues, and A. Loayssa, “BOTDA measurements tolerant to non-local effects by using a phase-modulated probe wave and RF demodulation,” Opt. Express 21(14), 17186–17194 (2013).
    [CrossRef] [PubMed]
  10. A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibres,” Electron. Lett. 22(8), 409–411 (1986).
    [CrossRef]
  11. C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37(8), 2945–2955 (1966).
    [CrossRef]
  12. S. Foaleng-Mafang, J. Beugnot, and L. Thevenaz, “Optical sampling technique applied to high resolution distributed fibre sensors,” Proc. SPIE 7503, 750369 (2009).
    [CrossRef]

2013 (3)

2012 (1)

2011 (1)

2010 (2)

2009 (1)

S. Foaleng-Mafang, J. Beugnot, and L. Thevenaz, “Optical sampling technique applied to high resolution distributed fibre sensors,” Proc. SPIE 7503, 750369 (2009).
[CrossRef]

2008 (1)

2005 (1)

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

1986 (1)

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibres,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

1966 (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37(8), 2945–2955 (1966).
[CrossRef]

Alferness, R. C.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibres,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Bao, X.

Bernini, R.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Beugnot, J.

S. Foaleng-Mafang, J. Beugnot, and L. Thevenaz, “Optical sampling technique applied to high resolution distributed fibre sensors,” Proc. SPIE 7503, 750369 (2009).
[CrossRef]

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Buhl, L. L.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibres,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Charaplyvy, A. R.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibres,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Chen, L.

Chin, S.

Danon, O.

A. Motil, O. Danon, Y. Peled, and M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

Dong, Y.

Foaleng-Mafang, S.

S. Foaleng-Mafang, J. Beugnot, and L. Thevenaz, “Optical sampling technique applied to high resolution distributed fibre sensors,” Proc. SPIE 7503, 750369 (2009).
[CrossRef]

Li, W.

Li, Y.

Lin, J.

Loayssa, A.

Mafang, S. F.

Minardo, A.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Motil, A.

A. Motil, O. Danon, Y. Peled, and M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

Peled, Y.

A. Motil, O. Danon, Y. Peled, and M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

Primerov, N.

Sagues, M.

Song, K. Y.

Tang, C. L.

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37(8), 2945–2955 (1966).
[CrossRef]

Thevenaz, L.

S. Foaleng-Mafang, J. Beugnot, and L. Thevenaz, “Optical sampling technique applied to high resolution distributed fibre sensors,” Proc. SPIE 7503, 750369 (2009).
[CrossRef]

Thévenaz, L.

Tkach, R. W.

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibres,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

Tur, M.

A. Motil, O. Danon, Y. Peled, and M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

Urricelqui, J.

Zeni, L.

R. Bernini, A. Minardo, and L. Zeni, “Long-range distributed Brillouin fiber sensors by use of an unbalanced double sideband probe,” Opt. Express 19(24), 23845–23856 (2011).
[CrossRef] [PubMed]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Zornoza, A.

Appl. Opt. (1)

Electron. Lett. (1)

A. R. Charaplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, “Phase modulation to amplitude modulation conversion of CW laser light in optical fibres,” Electron. Lett. 22(8), 409–411 (1986).
[CrossRef]

J. Appl. Phys. (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37(8), 2945–2955 (1966).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[CrossRef]

Opt. Express (5)

Proc. SPIE (2)

A. Motil, O. Danon, Y. Peled, and M. Tur, “High spatial resolution BOTDA using simultaneously launched gain and loss pump pulses,” Proc. SPIE 8794, 87943L (2013).
[CrossRef]

S. Foaleng-Mafang, J. Beugnot, and L. Thevenaz, “Optical sampling technique applied to high resolution distributed fibre sensors,” Proc. SPIE 7503, 750369 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of SBS interaction and the received RF signal using the PDPP technique.

Fig. 2
Fig. 2

(a) Calculated magnitude and RF phase-shift spectra for 5m (red-dashed line), 6m (blue-dot-dashed line) pulse lengths and the differential RF spectra (black-solid line) for a BFS difference of 50MHz between sections. (b) Calculated magnitude and RF phase-shift spectra for a BFS difference of 10 MHz and different injected probe powers: 20µW (black-solid line), 45µW (blue-dashed line), 100µW (red-dotted line) and 200µW (green-dot-dashed line). Simulations parameters are g0 = −1.5 10−11m/W, ΔνB = 30 MHz, L = 30 km, effective area is 7.18 10−11m2 and the injected optical pump power is 100mW.

Fig. 3
Fig. 3

Experimental setup for the PDPP-BOTDA sensor based on phase-modulated probe wave and RF demodulation.

Fig. 4
Fig. 4

(a) Measured pump pulse amplification at the end of the fiber. (b) Measured amplitude and RF phase-shift spectra at the hot spot section when that section is located at the probe input (red-dashed line) or at the pump input (black-solid line).

Fig. 5
Fig. 5

(a) Differential amplitude and RF phase-shift spectra at the hot spot section, when that section is located at the probe input (red dashed line) or at the pump input (black solid line). (b) Differential RF phase-shift distribution.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I(z)2 E 0 E SB cos(ϕ) g 0 Δ ν B Δ ν B 2 +4Δ ν 2 exp[ jarctan( 2 Δν Δ ν B ) ]+ +2 E 0 E SB sin(ϕ)exp(jπ/2 )[ 1+exp( g 0 Δ ν B Δ ν B +j2Δν ) ]
ϕ= LπcD f RF 2 ν 0 2
d E S ( z ) dz =[ j g 0 Δ ν B ( Δνj( Δ ν B /2 ) ) | E P | 2 + α 2 ] E S
d E P ( z ) dz =[ j g 0 Δ ν B ( Δν+j( Δ ν B /2 ) ) | E S | 2 α 2 ] E P

Metrics