Abstract

An optical microscopy system as a non-destructive method for measuring critical dimension (CD) is widely used for its stability and fastness. In case of transparent thin film measurement, it is hard to recognize the pattern under white light illumination due to its transparency and reflectance characteristics. In this paper, the optical measurement system using multispectral imaging for CD measurement of transparent thin film is introduced. The measurement system utilizes an Acousto-Optic Tunable Filter (AOTF) to illuminate the specimen with various monochromatic lights. The relationship between spectral reflectance and CD measurement are deduced from series of measurement experiments with two kinds of Indium Tin Oxide (ITO) patterned samples. When the difference of spectral reflectance between substrate and thin film layers is large enough to yield a large image intensity difference, the thin film layer can be distinguished from substrate, and it is possible to measure the CD of transparent thin films. This paper analyzes CD measurement of transparent thin film with reflectance theory and shows that the CD measurement of transparent thin film can be performed successfully with the proposed system within a certain wavelength range filtered by AOTF.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Mehta, M. Sugai, H. Hinosugi, S. Saito, M. Takeda, T. Kurokawa, H. Takahashi, M. Ando, M. Shishido, and T. Yoshizawa, “Simultaneous three-dimensional step-height measurement and high-resolution tomographic imaging with a spectral interferometric microscope,” Appl. Opt. 41(19), 3874–3885 (2002).
    [CrossRef] [PubMed]
  2. S. Park, T. Kim, J. Lee, and H. Pahk, “Real-time critical dimension measurement of thin film transistor liquid crystal display patterns using optical coherence tomography,” J. Electron. Imaging 23(1), 013001 (2014).
    [CrossRef]
  3. R. Hedjam and M. Cheriet, “Historical document image restoration using multispectral imaging system,” Pattern Recognit. 46(8), 2297–2312 (2013).
    [CrossRef]
  4. J. C. Noordam, W. H. van den Broek, and L. Buydens, “Detection and classification of latent defects and diseases on raw French fries with multispectral imaging,” J. Sci. Food Agric. 85(13), 2249–2259 (2005).
    [CrossRef]
  5. M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).
  6. S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,” Int. J. Comput. Vis. 17(3), 219–240 (1996).
    [CrossRef]
  7. A. Piegari and E. Masetti, “Thin film thickness measurement: a comparison of various techniques,” Thin Solid Films 124(3–4), 249–257 (1985).
    [CrossRef]
  8. F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Stand. Sect. A 67(4), 363–377 (1963).
    [CrossRef]
  9. L. Fried and H. Froot, “Thickness measurements of silicon dioxide films over small geometries,” J. Appl. Phys. 39(12), 5732–5735 (1968).
    [CrossRef]
  10. J. Lee, Y. Kim, S. Kim, I. Lee, and H. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng. 46(7), 558–569 (2008).
    [CrossRef]
  11. S. Park, J. Lee, and H. Pahk, “In-line critical dimension measurement system development of LCD pattern proposed by newly developed edge detection algorithm,” J. Opt. Soc. Korea 17(5), 392–398 (2013).
    [CrossRef]
  12. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).
  13. D. Yoon, T. Kim, M. Kim, and H. Pahk, “Unambiguous 3D surface measurement method for a micro-Fresnel lens-shaped lenticular lens based on a transmissive interferometer,” J. Opt. Soc. Korea 18(1), 37–44 (2014).
    [CrossRef]
  14. S. Tominaga and R. Okajima, “Object recognition by multi-spectral imaging with a liquid crystal filter,” in Proceedings of IEEE Conference on Pattern Recognition (IEEE, 2000), pp. 708–711.
    [CrossRef]
  15. S. Tominaga and S. Okamoto, “Reflectance-based material classification for printed circuit boards,” in Proceedings of IEEE Conference on Image Analysis and Processing (IEEE, 2003), pp. 238–244.
    [CrossRef]
  16. A. C. Diebold, Handbook of Silicon Semiconductor Metrology (CRC Press, 2001).
  17. T. Jo, S. Kim, and H. Pahk, “3D measurement of TSVs using low numerical aperture white-light scanning interferometry,” J. Opt. Soc. Korea 17(4), 317–322 (2013).
    [CrossRef]
  18. T. Jo, S. Kim, and H. Pahk, “Thickness and surface measurement of transparent thin film layers using white light scanning interferometry combined with reflectometry,” J. Opt. Soc. Korea 18, 236–243 (2014).
  19. K. Kim, S. Kim, S. Kwon, and H. Pahk, “Volumetric thin film thickness measurement using spectroscopic imaging reflectometer and compensation of reflectance error,” Int. J. Precis. Eng. Man. (to be published).
  20. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London B Biol. Sci. 207(1167), 187–217 (1980).
    [CrossRef] [PubMed]
  21. J. C. Russ, The Image Processing Handbook (CRC Press, 1995).
  22. A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 651–664 (1986).
    [CrossRef] [PubMed]

2014 (3)

2013 (3)

2008 (1)

J. Lee, Y. Kim, S. Kim, I. Lee, and H. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng. 46(7), 558–569 (2008).
[CrossRef]

2005 (1)

J. C. Noordam, W. H. van den Broek, and L. Buydens, “Detection and classification of latent defects and diseases on raw French fries with multispectral imaging,” J. Sci. Food Agric. 85(13), 2249–2259 (2005).
[CrossRef]

2002 (2)

M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).

D. S. Mehta, M. Sugai, H. Hinosugi, S. Saito, M. Takeda, T. Kurokawa, H. Takahashi, M. Ando, M. Shishido, and T. Yoshizawa, “Simultaneous three-dimensional step-height measurement and high-resolution tomographic imaging with a spectral interferometric microscope,” Appl. Opt. 41(19), 3874–3885 (2002).
[CrossRef] [PubMed]

1996 (1)

S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,” Int. J. Comput. Vis. 17(3), 219–240 (1996).
[CrossRef]

1986 (1)

A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 651–664 (1986).
[CrossRef] [PubMed]

1985 (1)

A. Piegari and E. Masetti, “Thin film thickness measurement: a comparison of various techniques,” Thin Solid Films 124(3–4), 249–257 (1985).
[CrossRef]

1980 (1)

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London B Biol. Sci. 207(1167), 187–217 (1980).
[CrossRef] [PubMed]

1968 (1)

L. Fried and H. Froot, “Thickness measurements of silicon dioxide films over small geometries,” J. Appl. Phys. 39(12), 5732–5735 (1968).
[CrossRef]

1963 (1)

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Stand. Sect. A 67(4), 363–377 (1963).
[CrossRef]

Ando, M.

Bolle, R. M.

S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,” Int. J. Comput. Vis. 17(3), 219–240 (1996).
[CrossRef]

Buydens, L.

J. C. Noordam, W. H. van den Broek, and L. Buydens, “Detection and classification of latent defects and diseases on raw French fries with multispectral imaging,” J. Sci. Food Agric. 85(13), 2249–2259 (2005).
[CrossRef]

Chan, D.

M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).

Chao, K.

M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).

Chen, Y.

M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).

Cheriet, M.

R. Hedjam and M. Cheriet, “Historical document image restoration using multispectral imaging system,” Pattern Recognit. 46(8), 2297–2312 (2013).
[CrossRef]

Fried, L.

L. Fried and H. Froot, “Thickness measurements of silicon dioxide films over small geometries,” J. Appl. Phys. 39(12), 5732–5735 (1968).
[CrossRef]

Froot, H.

L. Fried and H. Froot, “Thickness measurements of silicon dioxide films over small geometries,” J. Appl. Phys. 39(12), 5732–5735 (1968).
[CrossRef]

Hedjam, R.

R. Hedjam and M. Cheriet, “Historical document image restoration using multispectral imaging system,” Pattern Recognit. 46(8), 2297–2312 (2013).
[CrossRef]

Hildreth, E.

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London B Biol. Sci. 207(1167), 187–217 (1980).
[CrossRef] [PubMed]

Hinosugi, H.

Huertas, A.

A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 651–664 (1986).
[CrossRef] [PubMed]

Jo, T.

Kim, I.

M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).

Kim, K.

K. Kim, S. Kim, S. Kwon, and H. Pahk, “Volumetric thin film thickness measurement using spectroscopic imaging reflectometer and compensation of reflectance error,” Int. J. Precis. Eng. Man. (to be published).

Kim, M.

D. Yoon, T. Kim, M. Kim, and H. Pahk, “Unambiguous 3D surface measurement method for a micro-Fresnel lens-shaped lenticular lens based on a transmissive interferometer,” J. Opt. Soc. Korea 18(1), 37–44 (2014).
[CrossRef]

M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).

Kim, S.

T. Jo, S. Kim, and H. Pahk, “Thickness and surface measurement of transparent thin film layers using white light scanning interferometry combined with reflectometry,” J. Opt. Soc. Korea 18, 236–243 (2014).

T. Jo, S. Kim, and H. Pahk, “3D measurement of TSVs using low numerical aperture white-light scanning interferometry,” J. Opt. Soc. Korea 17(4), 317–322 (2013).
[CrossRef]

J. Lee, Y. Kim, S. Kim, I. Lee, and H. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng. 46(7), 558–569 (2008).
[CrossRef]

K. Kim, S. Kim, S. Kwon, and H. Pahk, “Volumetric thin film thickness measurement using spectroscopic imaging reflectometer and compensation of reflectance error,” Int. J. Precis. Eng. Man. (to be published).

Kim, T.

D. Yoon, T. Kim, M. Kim, and H. Pahk, “Unambiguous 3D surface measurement method for a micro-Fresnel lens-shaped lenticular lens based on a transmissive interferometer,” J. Opt. Soc. Korea 18(1), 37–44 (2014).
[CrossRef]

S. Park, T. Kim, J. Lee, and H. Pahk, “Real-time critical dimension measurement of thin film transistor liquid crystal display patterns using optical coherence tomography,” J. Electron. Imaging 23(1), 013001 (2014).
[CrossRef]

Kim, Y.

J. Lee, Y. Kim, S. Kim, I. Lee, and H. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng. 46(7), 558–569 (2008).
[CrossRef]

Kurokawa, T.

Kwon, S.

K. Kim, S. Kim, S. Kwon, and H. Pahk, “Volumetric thin film thickness measurement using spectroscopic imaging reflectometer and compensation of reflectance error,” Int. J. Precis. Eng. Man. (to be published).

Lee, I.

J. Lee, Y. Kim, S. Kim, I. Lee, and H. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng. 46(7), 558–569 (2008).
[CrossRef]

Lee, J.

S. Park, T. Kim, J. Lee, and H. Pahk, “Real-time critical dimension measurement of thin film transistor liquid crystal display patterns using optical coherence tomography,” J. Electron. Imaging 23(1), 013001 (2014).
[CrossRef]

S. Park, J. Lee, and H. Pahk, “In-line critical dimension measurement system development of LCD pattern proposed by newly developed edge detection algorithm,” J. Opt. Soc. Korea 17(5), 392–398 (2013).
[CrossRef]

J. Lee, Y. Kim, S. Kim, I. Lee, and H. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng. 46(7), 558–569 (2008).
[CrossRef]

Lefcourt, A.

M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).

Marr, D.

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London B Biol. Sci. 207(1167), 187–217 (1980).
[CrossRef] [PubMed]

Masetti, E.

A. Piegari and E. Masetti, “Thin film thickness measurement: a comparison of various techniques,” Thin Solid Films 124(3–4), 249–257 (1985).
[CrossRef]

McCrackin, F. L.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Stand. Sect. A 67(4), 363–377 (1963).
[CrossRef]

Medioni, G.

A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 651–664 (1986).
[CrossRef] [PubMed]

Mehta, D. S.

Nayar, S. K.

S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,” Int. J. Comput. Vis. 17(3), 219–240 (1996).
[CrossRef]

Noordam, J. C.

J. C. Noordam, W. H. van den Broek, and L. Buydens, “Detection and classification of latent defects and diseases on raw French fries with multispectral imaging,” J. Sci. Food Agric. 85(13), 2249–2259 (2005).
[CrossRef]

Okajima, R.

S. Tominaga and R. Okajima, “Object recognition by multi-spectral imaging with a liquid crystal filter,” in Proceedings of IEEE Conference on Pattern Recognition (IEEE, 2000), pp. 708–711.
[CrossRef]

Okamoto, S.

S. Tominaga and S. Okamoto, “Reflectance-based material classification for printed circuit boards,” in Proceedings of IEEE Conference on Image Analysis and Processing (IEEE, 2003), pp. 238–244.
[CrossRef]

Pahk, H.

D. Yoon, T. Kim, M. Kim, and H. Pahk, “Unambiguous 3D surface measurement method for a micro-Fresnel lens-shaped lenticular lens based on a transmissive interferometer,” J. Opt. Soc. Korea 18(1), 37–44 (2014).
[CrossRef]

T. Jo, S. Kim, and H. Pahk, “Thickness and surface measurement of transparent thin film layers using white light scanning interferometry combined with reflectometry,” J. Opt. Soc. Korea 18, 236–243 (2014).

S. Park, T. Kim, J. Lee, and H. Pahk, “Real-time critical dimension measurement of thin film transistor liquid crystal display patterns using optical coherence tomography,” J. Electron. Imaging 23(1), 013001 (2014).
[CrossRef]

S. Park, J. Lee, and H. Pahk, “In-line critical dimension measurement system development of LCD pattern proposed by newly developed edge detection algorithm,” J. Opt. Soc. Korea 17(5), 392–398 (2013).
[CrossRef]

T. Jo, S. Kim, and H. Pahk, “3D measurement of TSVs using low numerical aperture white-light scanning interferometry,” J. Opt. Soc. Korea 17(4), 317–322 (2013).
[CrossRef]

J. Lee, Y. Kim, S. Kim, I. Lee, and H. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng. 46(7), 558–569 (2008).
[CrossRef]

K. Kim, S. Kim, S. Kwon, and H. Pahk, “Volumetric thin film thickness measurement using spectroscopic imaging reflectometer and compensation of reflectance error,” Int. J. Precis. Eng. Man. (to be published).

Park, S.

S. Park, T. Kim, J. Lee, and H. Pahk, “Real-time critical dimension measurement of thin film transistor liquid crystal display patterns using optical coherence tomography,” J. Electron. Imaging 23(1), 013001 (2014).
[CrossRef]

S. Park, J. Lee, and H. Pahk, “In-line critical dimension measurement system development of LCD pattern proposed by newly developed edge detection algorithm,” J. Opt. Soc. Korea 17(5), 392–398 (2013).
[CrossRef]

Passaglia, E.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Stand. Sect. A 67(4), 363–377 (1963).
[CrossRef]

Piegari, A.

A. Piegari and E. Masetti, “Thin film thickness measurement: a comparison of various techniques,” Thin Solid Films 124(3–4), 249–257 (1985).
[CrossRef]

Saito, S.

Shishido, M.

Steinberg, H. L.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Stand. Sect. A 67(4), 363–377 (1963).
[CrossRef]

Stromberg, R. R.

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Stand. Sect. A 67(4), 363–377 (1963).
[CrossRef]

Sugai, M.

Takahashi, H.

Takeda, M.

Tominaga, S.

S. Tominaga and R. Okajima, “Object recognition by multi-spectral imaging with a liquid crystal filter,” in Proceedings of IEEE Conference on Pattern Recognition (IEEE, 2000), pp. 708–711.
[CrossRef]

S. Tominaga and S. Okamoto, “Reflectance-based material classification for printed circuit boards,” in Proceedings of IEEE Conference on Image Analysis and Processing (IEEE, 2003), pp. 238–244.
[CrossRef]

van den Broek, W. H.

J. C. Noordam, W. H. van den Broek, and L. Buydens, “Detection and classification of latent defects and diseases on raw French fries with multispectral imaging,” J. Sci. Food Agric. 85(13), 2249–2259 (2005).
[CrossRef]

Yoon, D.

Yoshizawa, T.

Appl. Opt. (1)

IEEE Trans. Pattern Anal. Mach. Intell. (1)

A. Huertas and G. Medioni, “Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian masks,” IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 651–664 (1986).
[CrossRef] [PubMed]

Int. J. Comput. Vis. (1)

S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,” Int. J. Comput. Vis. 17(3), 219–240 (1996).
[CrossRef]

J. Appl. Phys. (1)

L. Fried and H. Froot, “Thickness measurements of silicon dioxide films over small geometries,” J. Appl. Phys. 39(12), 5732–5735 (1968).
[CrossRef]

J. Electron. Imaging (1)

S. Park, T. Kim, J. Lee, and H. Pahk, “Real-time critical dimension measurement of thin film transistor liquid crystal display patterns using optical coherence tomography,” J. Electron. Imaging 23(1), 013001 (2014).
[CrossRef]

J. Opt. Soc. Korea (4)

J. Res. Nat. Bur. Stand. Sect. A (1)

F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. L. Steinberg, “Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry,” J. Res. Nat. Bur. Stand. Sect. A 67(4), 363–377 (1963).
[CrossRef]

J. Sci. Food Agric. (1)

J. C. Noordam, W. H. van den Broek, and L. Buydens, “Detection and classification of latent defects and diseases on raw French fries with multispectral imaging,” J. Sci. Food Agric. 85(13), 2249–2259 (2005).
[CrossRef]

Opt. Lasers Eng. (1)

J. Lee, Y. Kim, S. Kim, I. Lee, and H. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng. 46(7), 558–569 (2008).
[CrossRef]

Pattern Recognit. (1)

R. Hedjam and M. Cheriet, “Historical document image restoration using multispectral imaging system,” Pattern Recognit. 46(8), 2297–2312 (2013).
[CrossRef]

Proc. R. Soc. London B Biol. Sci. (1)

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London B Biol. Sci. 207(1167), 187–217 (1980).
[CrossRef] [PubMed]

Thin Solid Films (1)

A. Piegari and E. Masetti, “Thin film thickness measurement: a comparison of various techniques,” Thin Solid Films 124(3–4), 249–257 (1985).
[CrossRef]

Trans. Am. Soc. Agric. Eng. (1)

M. Kim, A. Lefcourt, K. Chao, Y. Chen, I. Kim, and D. Chan, “Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging,” Trans. Am. Soc. Agric. Eng. 45, 2027–2038 (2002).

Other (6)

K. Kim, S. Kim, S. Kwon, and H. Pahk, “Volumetric thin film thickness measurement using spectroscopic imaging reflectometer and compensation of reflectance error,” Int. J. Precis. Eng. Man. (to be published).

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User's Guide (Wiley, 1999).

S. Tominaga and R. Okajima, “Object recognition by multi-spectral imaging with a liquid crystal filter,” in Proceedings of IEEE Conference on Pattern Recognition (IEEE, 2000), pp. 708–711.
[CrossRef]

S. Tominaga and S. Okamoto, “Reflectance-based material classification for printed circuit boards,” in Proceedings of IEEE Conference on Image Analysis and Processing (IEEE, 2003), pp. 238–244.
[CrossRef]

A. C. Diebold, Handbook of Silicon Semiconductor Metrology (CRC Press, 2001).

J. C. Russ, The Image Processing Handbook (CRC Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Image intensity profile and derivative of intensity profile.

Fig. 3
Fig. 3

Edge detection criteria at derivative of intensity profile.

Fig. 4
Fig. 4

Reflections and transmissions of light at the thin-film layer.

Fig. 5
Fig. 5

Spectral reflectance simulation with variable ITO thickness.

Fig. 6
Fig. 6

Reflectance data acquisition process by the proposed system.

Fig. 7
Fig. 7

Reflectance data analysis for thickness at Sample 1 (a) and Sample 2 (b).

Fig. 8
Fig. 8

Images of invisible thin film pattern at sample 1 (a) and sample 2 (b) under the certain wavelength, 532 nm.

Fig. 9
Fig. 9

Images of visible thin film pattern at sample 1 (a) and sample 2 (b) image under the certain wavelength, 562 nm: dashed lines – detected edge with high contrast, arrows – CD of the measurement target.

Fig. 10
Fig. 10

3D surface profiles of sample 1 (a) and sample 2 (b).

Fig. 11
Fig. 11

Horizontal profiles of sample 1 (a) and sample 2 (b).

Fig. 12
Fig. 12

(a) The spectral reflectance of sample 1, (b) The difference of the spectral reflectance between P1 and P2 in sample 1.

Fig. 13
Fig. 13

(a) The spectral reflectance of sample 2, (b) The difference of the spectral reflectance between P1 and P2 in sample 2.

Fig. 14
Fig. 14

The difference of the spectral reflectance between P1 and P2 in sample 1 and minimum difference to detect edges in CD algorithm.

Fig. 15
Fig. 15

The difference of the spectral reflectance between P1 and P2 in sample 2 and minimum difference to detect edges in CD algorithm.

Tables (1)

Tables Icon

Table 1 Measurement Result Matrix [unit: μm]

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

r p,12 = N 2 cos θ 1 N 1 cos θ 2 N 2 cos θ 1 + N 1 cos θ 2
  r s,12 = N 1 cos θ 1 N 2 cos θ 2 N 1 cos θ 1 + N 2 cos θ 2
p = r p,12 + r p,23 exp( i2β )  1+ r p,12 r p,23 exp( i2β )
  s = r s,12 + r s,23 exp( i2β )  1+ r s,12 r s,23 exp( i2β )
 β=2π( λ d ) N 2 cos θ 2
 R= L re L in = | E re | 2 | E in | 2 = | | 2
  I x,y = R ( λ ) x,y E( λ )S( λ )
  I.D.= I x1,y1 I x2,y2 = R ( λ ) x1,y1 E( λ )S( λ ) R ( λ ) x2,y2 E( λ )S( λ )
  d I x,y dx = d R ( λ ) x,y E( λ )S( λ )dλ   dx
  I.D dx =  E*S( R x1,y1 R x2,y2 ) dx

Metrics