Abstract

A defectless hexagonal air-silica photonic crystal fiber (PCF) structure with its central hole selectively filled by a low-refractive-index liquid is numerically analyzed. Despite the fact that the refractive index of the liquid is significantly lower than that of silica, we found an optimal range of waveguide parameters to ensure light guidance through the liquid core in the fundamental mode, maximizing the light-liquid interaction over a desired wavelength range. Using the vectorial finite element method (FEM), we report detailed parametric studies in terms of the effective index, chromatic dispersion, optical loss, and modal intensity distribution of the liquid core PCFs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion properties of liquid-core photonic crystal fibers

Naoki Karasawa
Appl. Opt. 51(21) 5259-5265 (2012)

Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber

Rodrigo M. Gerosa, Danilo H. Spadoti, Christiano J. S. de Matos, Leonardo de S. Menezes, and Marcos A. R. Franco
Opt. Express 19(24) 24687-24698 (2011)

Highly birefringent V-groove liquid core fiber

Tavakol Nazari, Boram Joo, Ji-Hyun Hwang, Bjorn Paulson, Jiyoung Park, Young Min Jhon, and Kyunghwan Oh
Opt. Express 25(20) 24714-24726 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Gai, Y. Li, and E. S. Yeung, “Optical detection systems on microfluidic chips,” Top. Curr. Chem. 304, 171–201 (2011).
    [Crossref] [PubMed]
  2. G. Shuqin, H. Baokun, and L. Zuowei, “Application of liquid-core optical fiber in the measurements of Fourier transform Raman spectra,” Chem. Phys. Lett. 392(1-3), 123–126 (2004).
    [Crossref]
  3. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
    [Crossref] [PubMed]
  4. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14(15), 6800–6812 (2006).
    [Crossref] [PubMed]
  5. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
    [Crossref] [PubMed]
  6. K. Sugiya, M. Harada, and T. Okada, “Water-ice chip with liquid-core waveguide functionality. Toward lab on ice,” Lab Chip 9(8), 1037–1039 (2009).
    [Crossref] [PubMed]
  7. S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels,” IEEE Photon. Technol. Lett. 21(15), 1057–1059 (2009).
    [Crossref] [PubMed]
  8. Y. Huang, X. Yong, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
    [Crossref]
  9. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
    [Crossref] [PubMed]
  10. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23(11), 3580–3590 (2005).
    [Crossref]
  11. Z. Zhu and T. Brown, “Analysis of the space filling modes of photonic crystal fibers,” Opt. Express 8(10), 547–554 (2001).
    [Crossref] [PubMed]
  12. C. M. Cordeiro, E. M. Dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
    [Crossref] [PubMed]
  13. G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. S. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express 14(7), 3000–3006 (2006).
    [Crossref] [PubMed]
  14. N. Karasawa, “Dispersion properties of liquid-core photonic crystal fibers,” Appl. Opt. 51(21), 5259–5265 (2012).
    [Crossref] [PubMed]
  15. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
    [Crossref]
  16. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007).
    [Crossref] [PubMed]
  17. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [Crossref]
  18. X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt. 47(28), 5190–5196 (2008).
    [Crossref] [PubMed]
  19. Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Large negative dispersion in dual-core photonic crystal fibers based on optional mode coupling,” IEEE Photon. Technol. Lett. 20(16), 1402–1404 (2008).
    [Crossref]
  20. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  21. H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279(4), 295–301 (2000).
    [Crossref]
  22. W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, “Loss properties due to Rayleigh scattering in different types of fiber,” Opt. Express 11(1), 39–47 (2003).
    [Crossref] [PubMed]
  23. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, Jerlov and E. Steeman Nielsen, eds. (Academic, 1974), pp. 1–24.
  24. K. Tsujikawa, “Evaluation of Rayleigh scattering loss in photonic crystal fibers by using bi-directional OTDR measurement,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThA8 http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OThA8
    [Crossref]
  25. M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).
  26. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  27. H. Murata, “Optical fibers,” in Handbook of Optical Fibers and Cables (Marcel Dekker, 1988), pp. 15–178.
  28. S. Lee, J. Heung Jo, J. S. Kim, and I. K. Moon, “Detection system for sub-micrometer defects of a photo-mask using on-axis interference between reflected and scattered lights,” J. Opt. Soc. Korea 17(1), 73–80 (2013).
    [Crossref]

2013 (1)

2012 (1)

2011 (1)

H. Gai, Y. Li, and E. S. Yeung, “Optical detection systems on microfluidic chips,” Top. Curr. Chem. 304, 171–201 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

K. Sugiya, M. Harada, and T. Okada, “Water-ice chip with liquid-core waveguide functionality. Toward lab on ice,” Lab Chip 9(8), 1037–1039 (2009).
[Crossref] [PubMed]

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels,” IEEE Photon. Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

2008 (2)

X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt. 47(28), 5190–5196 (2008).
[Crossref] [PubMed]

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Large negative dispersion in dual-core photonic crystal fibers based on optional mode coupling,” IEEE Photon. Technol. Lett. 20(16), 1402–1404 (2008).
[Crossref]

2007 (1)

2006 (4)

2005 (2)

2004 (2)

G. Shuqin, H. Baokun, and L. Zuowei, “Application of liquid-core optical fiber in the measurements of Fourier transform Raman spectra,” Chem. Phys. Lett. 392(1-3), 123–126 (2004).
[Crossref]

Y. Huang, X. Yong, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

2003 (1)

2002 (1)

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).

2001 (1)

2000 (2)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279(4), 295–301 (2000).
[Crossref]

1997 (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

1973 (1)

1965 (1)

Antonopoulos, G.

Auguste, J. L.

Baokun, H.

G. Shuqin, H. Baokun, and L. Zuowei, “Application of liquid-core optical fiber in the measurements of Fourier transform Raman spectra,” Chem. Phys. Lett. 392(1-3), 123–126 (2004).
[Crossref]

Benabid, F.

Bian, B.

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Large negative dispersion in dual-core photonic crystal fibers based on optional mode coupling,” IEEE Photon. Technol. Lett. 20(16), 1402–1404 (2008).
[Crossref]

Bird, D. M.

Birks, T. A.

Blondy, J. M.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Brito Cruz, C. H.

Brown, T.

Chinaud, J.

Cho, S. H.

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels,” IEEE Photon. Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

Cordeiro, C. M.

Daimon, M.

de Matos, C. J.

Delaye, P.

Dos Santos, E. M.

Eggleton, B. J.

El-Kashef, H.

H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279(4), 295–301 (2000).
[Crossref]

Emery, T.

Ferreiira, D. S.

Février, S.

Frey, R.

Gai, H.

H. Gai, Y. Li, and E. S. Yeung, “Optical detection systems on microfluidic chips,” Top. Curr. Chem. 304, 171–201 (2011).
[Crossref] [PubMed]

Giessen, H.

Gissibl, T.

Godin, J.

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels,” IEEE Photon. Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

Guobin, R.

Hale, G. M.

Harada, M.

K. Sugiya, M. Harada, and T. Okada, “Water-ice chip with liquid-core waveguide functionality. Toward lab on ice,” Lab Chip 9(8), 1037–1039 (2009).
[Crossref] [PubMed]

Heung Jo, J.

Hou, L.

Hou, Z.

Huang, Y.

Y. Huang, X. Yong, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Karasawa, N.

Kim, J. S.

Knight, J. C.

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Koshiba, M.

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23(11), 3580–3590 (2005).
[Crossref]

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).

Kuhlmey, B. T.

Lee, S.

Li, S.

Li, Y.

H. Gai, Y. Li, and E. S. Yeung, “Optical detection systems on microfluidic chips,” Top. Curr. Chem. 304, 171–201 (2011).
[Crossref] [PubMed]

Li, Z.

Liu, Z.

Lo, Y. H.

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels,” IEEE Photon. Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

Lu, J.

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Large negative dispersion in dual-core photonic crystal fibers based on optional mode coupling,” IEEE Photon. Technol. Lett. 20(16), 1402–1404 (2008).
[Crossref]

Malitson, I. H.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Masumura, A.

Moon, I. K.

Okada, T.

K. Sugiya, M. Harada, and T. Okada, “Water-ice chip with liquid-core waveguide functionality. Toward lab on ice,” Lab Chip 9(8), 1037–1039 (2009).
[Crossref] [PubMed]

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Pricking, S.

Psaltis, D.

Querry, M. R.

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Roosen, G.

Rouvie, A.

Roy, P.

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
[Crossref] [PubMed]

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Russell, P. S.

Saitoh, K.

Scherer, A.

Shi, Y.

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Large negative dispersion in dual-core photonic crystal fibers based on optional mode coupling,” IEEE Photon. Technol. Lett. 20(16), 1402–1404 (2008).
[Crossref]

Shuisheng, J.

Shuqin, G.

G. Shuqin, H. Baokun, and L. Zuowei, “Application of liquid-core optical fiber in the measurements of Fourier transform Raman spectra,” Chem. Phys. Lett. 392(1-3), 123–126 (2004).
[Crossref]

Shuqin, L.

Sugiya, K.

K. Sugiya, M. Harada, and T. Okada, “Water-ice chip with liquid-core waveguide functionality. Toward lab on ice,” Lab Chip 9(8), 1037–1039 (2009).
[Crossref] [PubMed]

Teipel, J.

Viale, P.

Vieweg, M.

Wei, D.

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Wu, D. C.

Yariv, A.

Y. Huang, X. Yong, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Yeung, E. S.

H. Gai, Y. Li, and E. S. Yeung, “Optical detection systems on microfluidic chips,” Top. Curr. Chem. 304, 171–201 (2011).
[Crossref] [PubMed]

Yiou, S.

Yong, X.

Y. Huang, X. Yong, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Zhang, R.

Zhang, Z.

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Large negative dispersion in dual-core photonic crystal fibers based on optional mode coupling,” IEEE Photon. Technol. Lett. 20(16), 1402–1404 (2008).
[Crossref]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[Crossref] [PubMed]

Zhao, X.

Zhi, W.

Zhou, G.

Zhu, Z.

Zuowei, L.

G. Shuqin, H. Baokun, and L. Zuowei, “Application of liquid-core optical fiber in the measurements of Fourier transform Raman spectra,” Chem. Phys. Lett. 392(1-3), 123–126 (2004).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Y. Huang, X. Yong, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[Crossref]

Chem. Phys. Lett. (1)

G. Shuqin, H. Baokun, and L. Zuowei, “Application of liquid-core optical fiber in the measurements of Fourier transform Raman spectra,” Chem. Phys. Lett. 392(1-3), 123–126 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Z. Zhang, Y. Shi, B. Bian, and J. Lu, “Large negative dispersion in dual-core photonic crystal fibers based on optional mode coupling,” IEEE Photon. Technol. Lett. 20(16), 1402–1404 (2008).
[Crossref]

S. H. Cho, J. Godin, and Y. H. Lo, “Optofluidic waveguides in Teflon AF-coated PDMS microfluidic channels,” IEEE Photon. Technol. Lett. 21(15), 1057–1059 (2009).
[Crossref] [PubMed]

IEICE Trans. Electron. (1)

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. 85-C, 881–888 (2002).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Korea (1)

Lab Chip (1)

K. Sugiya, M. Harada, and T. Okada, “Water-ice chip with liquid-core waveguide functionality. Toward lab on ice,” Lab Chip 9(8), 1037–1039 (2009).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Opt. Express (8)

W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, “Loss properties due to Rayleigh scattering in different types of fiber,” Opt. Express 11(1), 39–47 (2003).
[Crossref] [PubMed]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
[Crossref] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[Crossref] [PubMed]

R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14(15), 6800–6812 (2006).
[Crossref] [PubMed]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
[Crossref] [PubMed]

Z. Zhu and T. Brown, “Analysis of the space filling modes of photonic crystal fibers,” Opt. Express 8(10), 547–554 (2001).
[Crossref] [PubMed]

C. M. Cordeiro, E. M. Dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
[Crossref] [PubMed]

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight, and P. S. Russell, “Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling,” Opt. Express 14(7), 3000–3006 (2006).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Physica B (1)

H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents,” Physica B 279(4), 295–301 (2000).
[Crossref]

Top. Curr. Chem. (1)

H. Gai, Y. Li, and E. S. Yeung, “Optical detection systems on microfluidic chips,” Top. Curr. Chem. 304, 171–201 (2011).
[Crossref] [PubMed]

Other (3)

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, Jerlov and E. Steeman Nielsen, eds. (Academic, 1974), pp. 1–24.

K. Tsujikawa, “Evaluation of Rayleigh scattering loss in photonic crystal fibers by using bi-directional OTDR measurement,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThA8 http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-OThA8
[Crossref]

H. Murata, “Optical fibers,” in Handbook of Optical Fibers and Cables (Marcel Dekker, 1988), pp. 15–178.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic diagram of liquid core guidance through the liquid core photonic crystal fiber (LCPCF) (b) Cross-section of the LCPCF with geometrical parameters such as hole diameter d and its pitch Λ. (c) Spectral refractive index of silica (nsilica), liquid (nliquid) and effective index of fundamental mode (nHE11) with the condition of liquid core guidance in shaded region
Fig. 2
Fig. 2 (a) Effective refractive indices of the fundamental and higher order modes of water core PCF with air-filling ratio, d/Λ = 0.8 and hole diameter, d = 1.0μm. (b) Evolution of field distribution of HE11 mode versus wavelength. (c) Comparison of intensity distribution of the HE11 mode at λ = 0.5, 1.0, and 1.5μm. (d) Optical power fraction of HE11 mode in water core, silica, and air-holes versus wavelength.
Fig. 3
Fig. 3 (a) Three effective index layers of LCPCFs: the central liquid core (nliquid), silica ring (nsilica), and the air-silica cladding (nFSM). (b) Dispersion and dispersion slope of the fundamental mode (HE11) with varied wavelength. (c) Intensity and electric field direction distribution (black arrows) of higher order modes, TE01, TM01, HE21 at λ = 1.0μm, and HE31 at λ = 0.65μm
Fig. 4
Fig. 4 The range of the structural parameters that permits the liquid core fundamental guidance in LCPCF as a function of the liquid refractive index at wavelengths, λ = 0.5, 1.0, 1.5μm: (a) the air-filling ratio (d/Λ) range for the hole diameter of d = 1.5μm and (b) the hole diameter range for the air-filling ratio of d/Λ = 0.8. The shaded regions indicate the fundamental liquid core mode guidance conditions. Power fraction in liquid core at λ = 1.0μm (c) with varied air-filling ratio at d = 1.5μm and (d) with varied hole diameter at d/Λ = 0.8.
Fig. 5
Fig. 5 The range of the structural parameters that permits the fundamental guidance in LCPCF along the spectral range from 0.5 to 1.5 μm for water, ethanol, and butanol: (a) the air-filling ratio (d/Λ) range for a hole diameter of d = 1.5μm and (b) the hole diameter range for an air-filling ratio of d/Λ = 0.8. The shaded regions indicate the fundamental liquid core mode guidance conditions. Power fraction in water core (c) with varied air-filling ratio at d = 1.5μm and (d) with varied hole diameter at d/Λ = 0.8.
Fig. 6
Fig. 6 Water core PCFs: (a) Effective refractive index and (c) chromatic dispersion of the HE11 mode for various air-filling ratios with a fixed hole diameter d = 1.5μm. (b) Effective refractive index and (d) chromatic dispersion for various hole diameters with a fixed air-filling ratio d/Λ = 0.8.
Fig. 7
Fig. 7 Optical loss of water core PCFs while applying (a) different air-filling ratio with the fixed hole diameter (d = 1.5μm) and (b) different hole diameter with the fixed air-filling ratio (d/Λ = 0.8)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

×( n 2 ( ω )× H ) k 0 2 H =0
D( λ )= λ c 2 Re[ n eff ( λ ) ] λ 2

Metrics