Abstract

We demonstrate that the colorizing effect of angle dependence can be efficiently and conveniently achieved on the rippled surface of pure copper processed by the femtosecond laser with an out-of-focus method, which greatly improves the machining speed. Such a laser-induced colorization can occur in a wide range of laser fluence, which determines the coverage and morphological characteristics of laser-induced ripples and thus can finely tune the colorizing effect. By inspecting the colors and corresponding spectra of treated areas at different angles, the relationship between the diffracted light central wavelength and the laser-induced near-subwavelength grating is analyzed quantitatively based on the fundamental grating equation with the experimental grating parameters. The spectrum analysis indicates that for the laser fluence increasing in a suitable range, the more clarity and regularity of formed ripples should bring out a more prominent grating effect, which becomes further matching of the grating equation in a larger inspecting angle for the elimination of the influence of the diffused reflection light. In short, the study confirms that the colorizing phenomenon mainly ascribes to the grating diffraction effect of the laser-induced periodic surface ripples, which would help to enable the flexible control of the colorizing effect induced by laser processing on pure copper.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
    [CrossRef]
  2. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
    [CrossRef]
  3. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
    [CrossRef]
  4. J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
    [CrossRef]
  5. M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
    [CrossRef]
  6. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
    [CrossRef] [PubMed]
  7. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
    [CrossRef]
  8. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [CrossRef]
  9. Y. Yang, J. Yang, C. Liang, and H. Wang, “Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses,” Opt. Express 16(15), 11259–11265 (2008).
    [CrossRef] [PubMed]
  10. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [CrossRef] [PubMed]
  11. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
    [CrossRef] [PubMed]
  12. M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. G. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Appl. Surf. Sci. 257(17), 7771–7777 (2011).
    [CrossRef]
  13. J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
    [CrossRef]
  14. C. Y. Zhang, J. W. Yao, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, V. A. Trofimov, and T. M. Lysak, “Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses,” Opt. Lett. 37(6), 1106–1108 (2012).
    [CrossRef] [PubMed]
  15. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  16. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [CrossRef]
  17. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
    [CrossRef] [PubMed]
  18. M. Huang and Z. Xu, “Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons,” Laser Photon. Rev. early view (2014).

2012 (2)

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

C. Y. Zhang, J. W. Yao, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, V. A. Trofimov, and T. M. Lysak, “Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses,” Opt. Lett. 37(6), 1106–1108 (2012).
[CrossRef] [PubMed]

2011 (2)

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[CrossRef] [PubMed]

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. G. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Appl. Surf. Sci. 257(17), 7771–7777 (2011).
[CrossRef]

2010 (1)

2009 (3)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (1)

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

2005 (2)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[CrossRef]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[CrossRef]

2003 (1)

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

1999 (1)

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Ahmed, F.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. G. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Appl. Surf. Sci. 257(17), 7771–7777 (2011).
[CrossRef]

Ahsan, M. S.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. G. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Appl. Surf. Sci. 257(17), 7771–7777 (2011).
[CrossRef]

Audouard, E.

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[CrossRef]

Borowiec, A.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Bounhalli, M.

Brown, W. D.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Colombier, J. P.

Dai, Q.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

Dai, Q. F.

Dusser, B.

Faure, N.

Garrelie, F.

F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express 19(10), 9035–9043 (2011).
[CrossRef] [PubMed]

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Guillermin, M.

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[CrossRef]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[CrossRef]

Haugen, H. K.

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Jourlin, M.

Jun, M. B. G.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. G. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Appl. Surf. Sci. 257(17), 7771–7777 (2011).
[CrossRef]

Kim, Y. G.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. G. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Appl. Surf. Sci. 257(17), 7771–7777 (2011).
[CrossRef]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Lan, S.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

C. Y. Zhang, J. W. Yao, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, V. A. Trofimov, and T. M. Lysak, “Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses,” Opt. Lett. 37(6), 1106–1108 (2012).
[CrossRef] [PubMed]

Lee, M. S.

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. G. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Appl. Surf. Sci. 257(17), 7771–7777 (2011).
[CrossRef]

Liang, C.

Liu, H.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

Liu, H. Y.

Lysak, T. M.

C. Y. Zhang, J. W. Yao, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, V. A. Trofimov, and T. M. Lysak, “Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses,” Opt. Lett. 37(6), 1106–1108 (2012).
[CrossRef] [PubMed]

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

Malshe, A. P.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Molian, P. A.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[CrossRef]

Ozkan, A. M.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Parriaux, O.

Pigeon, F.

Railkar, T. A.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Reynaud, S.

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Sagan, Z.

Sanner, N.

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Shirk, M. D.

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

Soder, H.

B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express 18(3), 2913–2924 (2010).
[CrossRef] [PubMed]

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[CrossRef]

Tonchev, S.

Trofimov, V. A.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

C. Y. Zhang, J. W. Yao, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, V. A. Trofimov, and T. M. Lysak, “Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses,” Opt. Lett. 37(6), 1106–1108 (2012).
[CrossRef] [PubMed]

Venu Gopal, A.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[CrossRef]

Wang, H.

Wang, J.

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[CrossRef]

Wu, L.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

Wu, L. J.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

Yang, J.

Yang, Y.

Yao, J.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

Yao, J. W.

Zhang, C.

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

Zhang, C. Y.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of Laser-Induced Near-Subwavelength Ripples: Interference between Surface Plasmons and Incident Laser,” ACS Nano 3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999).
[CrossRef]

A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003).
[CrossRef]

J. Wang and C. Guo, “Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals,” Appl. Phys. Lett. 87(25), 251914 (2005).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[CrossRef]

Appl. Surf. Sci. (3)

M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee, and M. B. G. Jun, “Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures,” Appl. Surf. Sci. 257(17), 7771–7777 (2011).
[CrossRef]

J. Yao, C. Zhang, H. Liu, Q. Dai, L. Wu, S. Lan, A. Venu Gopal, V. A. Trofimov, and T. M. Lysak, “Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses,” Appl. Surf. Sci. 258(19), 7625–7632 (2012).
[CrossRef]

M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253(19), 8075–8079 (2007).
[CrossRef]

J. Appl. Phys. (3)

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[CrossRef]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97(1), 013538 (2005).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[CrossRef] [PubMed]

Other (1)

M. Huang and Z. Xu, “Spontaneous scaling down of femtosecond laser-induced apertures towards the 10-nanometer level: the excitation of quasistatic surface plasmons,” Laser Photon. Rev. early view (2014).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experiment setups. (a) The setup for the out-of-focus laser processing technique. (b) The setup for the optical and spectral characterizations of the laser processing sample surface.

Fig. 2
Fig. 2

SEM images of the treated areas of pure copper. Group (a), (b), (c) are the areas irradiated by the laser pulses with the peak fluences of 0.38, 0.75, and 1.13 J/cm2, respectively. The images in Column (1) show the treated regions at the center of the scanning line, for which the magnified surface morphologies are shown in Column (2) and Column (3). The images in Column (4) show the treated regions between two adjacent scanning lines. In addition, the E-field direction of the polarized laser is indicated by a double arrow in the upper right corner of (a4).

Fig. 3
Fig. 3

FFT results of the SEM images. (a) Accumulated results of the FFT matrix for the cases of 0.38, 0.75 and 1.13 J/cm2, respectively. (b) The corresponding periods derived from the peaks of the accumulated results as a function of peak fluence.

Fig. 4
Fig. 4

The color features of the treated copper surface. (a) The multicolored appearance of the treated surface was taken by a camera with the illumination of a white light. Irradiated fluences: 1.38 J/cm2 (up), 1.26 J/cm2 (middle), and 1.13 J/cm2 (down) in the left column; 1.00 J/cm2 (up), 0.88 J/cm2 (middle), and 0.75 J/cm2 (down) in the middle column; 0.63J/cm2 (up), 0.50 J/cm2 (middle), and 0.38 J/cm2 (down) in the right column. (b) The grating rainbow projects onto a white paper when the treated square area corresponding to the peak fluence of 1.13 J/cm2 is illuminated by the parallel white light of normal incidence. (c) The color evolution of the treated areas is presented as functions of the laser fluence and the inspecting angle (θ) under the illumination of parallel white light of normal incident, as shown in Fig. 1(b).

Fig. 5
Fig. 5

Spectra of the diffracted light from the sample surface. (a) At the angle of 50 degrees, the diffracted spectra of the treated areas corresponding to the peak fluence of 0.38, 0.75 and 1.13 J/cm2, respectively, and the non-irradiated surface. Note that the diffracted spectra have been divided by the spectrum of the incident light and then normalized. In addition, for reference, the reflectivity of the pure copper sample measured by an integrating sphere has also been provided. (b) The diffracted spectra corresponding to the peak fluence of 0.38, 0.75 and 1.13 J/cm2 shown in (a) are further divided by the reflection spectrum of the pure copper sample and normalized. (c) In the inspecting angles of 40, 50, 60 and 70 degrees, the diffracted spectra of the treated area corresponding to the peak fluence of 0.75 J/cm2 are presented after the same spectral transformation like (b).

Fig. 6
Fig. 6

The central wavelengths of the spectral peaks are presented as functions of (a) the peak fluence for the inspecting angles of 40, 50, 60 and 70 degrees and (b) the inspecting angle for the peak fluences of 0.38, 0.75 and 1.13 J/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dsinθ=mλ

Metrics