Abstract

We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector’s pixels. Absorption and phase-shifting images of a dragonfly’s hindwing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 μm width cross veins.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Yin, B. W.-H. Ng, and D. Abbott, Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction (Springer, 2012).
  2. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  3. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197(1051), 454–487 (1949)
  4. R. Mahon, A. Murphy, and W. Lanigan, Terahertz Holographic Image Reconstruction and Analysis (IEEE, 2004), pp. 749–750.
  5. R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
    [CrossRef]
  6. V. S. Cherkassky, B. A. Knyazev, S. V. Kozlov, V. V. Kubarev, G. N. Kulipanov, A. N. Matveenko, V. M. Popik, D. N. Root, P. D. Rudych, O. A. Shevchenko, A. V. Trifutina, and N. A. Vinokurov, Terahertz Imaging and Holography with a High-power Free Electron Laser (IEEE, 2005), pp. 337–338.
  7. B. A. Knyazev, A. L. Balandin, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. A. Dem'yanenko, D. G. Esaev, A. A. Nikitin, V. V. Pickalov, M. G. Vlasenko, D. G. Rodionov, and O. A. Shevchenko, “Classic holography, tomography and speckle metrology using a high-power terahertz free electron laser and real-time image detectors,” in 35th International Conference on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz 2010) (2010), pp. 1–3.
  8. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
    [CrossRef] [PubMed]
  9. S. H. Ding, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett. 36(11), 1993–1995 (2011).
    [CrossRef] [PubMed]
  10. Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Research on reconstruction algorithms in 2.52 THz off-axis digital holography,” J. Infrared Millim. Terahertz Waves 33(10), 1039–1051 (2012).
    [CrossRef]
  11. Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107(1), 103–110 (2012).
    [CrossRef]
  12. Q. Li, K. Xue, Y. D. Li, and Q. Wang, “Experimental research on terahertz Gabor inline digital holography of concealed objects,” Appl. Opt. 51(29), 7052–7058 (2012).
    [CrossRef] [PubMed]
  13. K. Xue, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. Lett. 37(15), 3228–3230 (2012).
    [CrossRef] [PubMed]
  14. T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110(5), 472–482 (2010).
    [CrossRef]
  15. G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10(3), 423–433 (1993).
    [CrossRef]
  16. T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
    [CrossRef] [PubMed]
  17. L. Rong, Y. Li, S. Liu, W. Xiao, F. Pan, and D. Y. Wang, “Iterative solution to twin image problem in in-line digital holography,” Opt. Lasers Eng. 51(5), 553–559 (2013).
    [CrossRef]
  18. D. Loic, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
  19. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11(24), 3234–3241 (2003).
    [CrossRef] [PubMed]
  20. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29(15), 1787–1789 (2004).
    [CrossRef] [PubMed]
  21. L. Rong, F. Pan, W. Xiao, Y. Li, and F. J. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10(6), 060902 (2012).
    [CrossRef]
  22. Y. Li, W. Xiao, F. Pan, and L. Rong, “Phase retrieval from double axially displaced holograms for dual-wavelength in-line holography,” Chin. Opt. Lett. 12(2), 020901 (2014).
    [CrossRef]
  23. L. J. Zeng, H. Matsumoto, and K. Kawachi, “Simultaneous measurement of the shape and thickness of a dragonfly wing,” Meas. Sci. Technol. 7(12), 1728–1732 (1996).
    [CrossRef]
  24. Z. X. Li, W. Shen, G. S. Tong, J. M. Tian, and L. Vu-Quoc, “On the vein-stiffening membrane structure of a dragonfly hind wing,” J. Zhejiang Univ.- SCI A 10(1), 72–81 (2009).
  25. S. R. Jongerius and D. Lentink, “Structural analysis of a dragonfly wing,” Exp. Mech. 50(9), 1323–1334 (2010).
    [CrossRef]
  26. H. H. Ren, X. S. Wang, Y. L. Chen, and X. D. Li, “Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation,” Chin. Phys. B 21(3), 034501 (2012).
    [CrossRef]
  27. H. X. Zhao, Y. J. Yin, and Z. Zhong, “Micro and nano structures and morphologies on the wing veins of dragonflies,” Chin. Sci. Bull. 55(19), 1993–1995 (2010).
    [CrossRef]
  28. T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17(13), 10697–10705 (2009).
    [CrossRef] [PubMed]
  29. www.ophiropt.com .
  30. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).
  31. O. Bryngdah and A. Lohmann, “Single-sideband holography,” J. Opt. Soc. Am. 58(5), 620–624 (1968).
    [CrossRef]
  32. T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “On artefact-free reconstruction of low-energy (30-250eV) electron holograms,” Ultramicroscopy, in press.
  33. S. G. Podorov, A. I. Bishop, D. M. Paganin, and K. M. Pavlov, “Re-sampling of inline holographic images for improved reconstruction resolution,” arXiv:0911.0520 (2009).
  34. T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, “When holography meets coherent diffraction imaging,” Opt. Express 20(27), 28871–28892 (2012).
    [CrossRef] [PubMed]
  35. T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21(6), 7726–7733 (2013).
    [CrossRef] [PubMed]
  36. T. Latychevskaia and H.-W. Fink, “Coherent microscopy at resolution beyond diffraction limit using post-experimental data extrapolation,” Appl. Phys. Lett. 103(20), 204105 (2013).
    [CrossRef]

2014

2013

T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21(6), 7726–7733 (2013).
[CrossRef] [PubMed]

L. Rong, Y. Li, S. Liu, W. Xiao, F. Pan, and D. Y. Wang, “Iterative solution to twin image problem in in-line digital holography,” Opt. Lasers Eng. 51(5), 553–559 (2013).
[CrossRef]

T. Latychevskaia and H.-W. Fink, “Coherent microscopy at resolution beyond diffraction limit using post-experimental data extrapolation,” Appl. Phys. Lett. 103(20), 204105 (2013).
[CrossRef]

2012

H. H. Ren, X. S. Wang, Y. L. Chen, and X. D. Li, “Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation,” Chin. Phys. B 21(3), 034501 (2012).
[CrossRef]

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Research on reconstruction algorithms in 2.52 THz off-axis digital holography,” J. Infrared Millim. Terahertz Waves 33(10), 1039–1051 (2012).
[CrossRef]

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107(1), 103–110 (2012).
[CrossRef]

L. Rong, F. Pan, W. Xiao, Y. Li, and F. J. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10(6), 060902 (2012).
[CrossRef]

K. Xue, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. Lett. 37(15), 3228–3230 (2012).
[CrossRef] [PubMed]

Q. Li, K. Xue, Y. D. Li, and Q. Wang, “Experimental research on terahertz Gabor inline digital holography of concealed objects,” Appl. Opt. 51(29), 7052–7058 (2012).
[CrossRef] [PubMed]

T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, “When holography meets coherent diffraction imaging,” Opt. Express 20(27), 28871–28892 (2012).
[CrossRef] [PubMed]

2011

2010

T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110(5), 472–482 (2010).
[CrossRef]

H. X. Zhao, Y. J. Yin, and Z. Zhong, “Micro and nano structures and morphologies on the wing veins of dragonflies,” Chin. Sci. Bull. 55(19), 1993–1995 (2010).
[CrossRef]

S. R. Jongerius and D. Lentink, “Structural analysis of a dragonfly wing,” Exp. Mech. 50(9), 1323–1334 (2010).
[CrossRef]

2009

Z. X. Li, W. Shen, G. S. Tong, J. M. Tian, and L. Vu-Quoc, “On the vein-stiffening membrane structure of a dragonfly hind wing,” J. Zhejiang Univ.- SCI A 10(1), 72–81 (2009).

T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17(13), 10697–10705 (2009).
[CrossRef] [PubMed]

2007

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[CrossRef] [PubMed]

2006

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[CrossRef]

2005

D. Loic, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

2004

2003

1996

L. J. Zeng, H. Matsumoto, and K. Kawachi, “Simultaneous measurement of the shape and thickness of a dragonfly wing,” Meas. Sci. Technol. 7(12), 1728–1732 (1996).
[CrossRef]

1993

1968

1949

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197(1051), 454–487 (1949)

1948

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Bryngdah, O.

Chen, Y. L.

H. H. Ren, X. S. Wang, Y. L. Chen, and X. D. Li, “Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation,” Chin. Phys. B 21(3), 034501 (2012).
[CrossRef]

Ding, S. H.

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107(1), 103–110 (2012).
[CrossRef]

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Research on reconstruction algorithms in 2.52 THz off-axis digital holography,” J. Infrared Millim. Terahertz Waves 33(10), 1039–1051 (2012).
[CrossRef]

S. H. Ding, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett. 36(11), 1993–1995 (2011).
[CrossRef] [PubMed]

Ducottet, C.

D. Loic, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Escher, C.

T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “On artefact-free reconstruction of low-energy (30-250eV) electron holograms,” Ultramicroscopy, in press.

Everitt, H. O.

Fink, H.-W.

T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21(6), 7726–7733 (2013).
[CrossRef] [PubMed]

T. Latychevskaia and H.-W. Fink, “Coherent microscopy at resolution beyond diffraction limit using post-experimental data extrapolation,” Appl. Phys. Lett. 103(20), 204105 (2013).
[CrossRef]

T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, “When holography meets coherent diffraction imaging,” Opt. Express 20(27), 28871–28892 (2012).
[CrossRef] [PubMed]

T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17(13), 10697–10705 (2009).
[CrossRef] [PubMed]

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[CrossRef] [PubMed]

T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “On artefact-free reconstruction of low-energy (30-250eV) electron holograms,” Ultramicroscopy, in press.

Formanek, P.

T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110(5), 472–482 (2010).
[CrossRef]

Fournel, T.

D. Loic, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Fournier, C.

D. Loic, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Gabor, D.

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197(1051), 454–487 (1949)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Gregory, D. A.

Heimbeck, M. S.

Jongerius, S. R.

S. R. Jongerius and D. Lentink, “Structural analysis of a dragonfly wing,” Exp. Mech. 50(9), 1323–1334 (2010).
[CrossRef]

Joyeux, D.

Kawachi, K.

L. J. Zeng, H. Matsumoto, and K. Kawachi, “Simultaneous measurement of the shape and thickness of a dragonfly wing,” Meas. Sci. Technol. 7(12), 1728–1732 (1996).
[CrossRef]

Kim, M. K.

Koch, C. T.

T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110(5), 472–482 (2010).
[CrossRef]

Koren, G.

Lanigan, W.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[CrossRef]

Latychevskaia, T.

T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21(6), 7726–7733 (2013).
[CrossRef] [PubMed]

T. Latychevskaia and H.-W. Fink, “Coherent microscopy at resolution beyond diffraction limit using post-experimental data extrapolation,” Appl. Phys. Lett. 103(20), 204105 (2013).
[CrossRef]

T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, “When holography meets coherent diffraction imaging,” Opt. Express 20(27), 28871–28892 (2012).
[CrossRef] [PubMed]

T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110(5), 472–482 (2010).
[CrossRef]

T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17(13), 10697–10705 (2009).
[CrossRef] [PubMed]

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[CrossRef] [PubMed]

T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “On artefact-free reconstruction of low-energy (30-250eV) electron holograms,” Ultramicroscopy, in press.

Lentink, D.

S. R. Jongerius and D. Lentink, “Structural analysis of a dragonfly wing,” Exp. Mech. 50(9), 1323–1334 (2010).
[CrossRef]

Li, Q.

K. Xue, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. Lett. 37(15), 3228–3230 (2012).
[CrossRef] [PubMed]

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Research on reconstruction algorithms in 2.52 THz off-axis digital holography,” J. Infrared Millim. Terahertz Waves 33(10), 1039–1051 (2012).
[CrossRef]

Q. Li, K. Xue, Y. D. Li, and Q. Wang, “Experimental research on terahertz Gabor inline digital holography of concealed objects,” Appl. Opt. 51(29), 7052–7058 (2012).
[CrossRef] [PubMed]

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107(1), 103–110 (2012).
[CrossRef]

S. H. Ding, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett. 36(11), 1993–1995 (2011).
[CrossRef] [PubMed]

Li, X. D.

H. H. Ren, X. S. Wang, Y. L. Chen, and X. D. Li, “Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation,” Chin. Phys. B 21(3), 034501 (2012).
[CrossRef]

Li, Y.

Li, Y. D.

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Research on reconstruction algorithms in 2.52 THz off-axis digital holography,” J. Infrared Millim. Terahertz Waves 33(10), 1039–1051 (2012).
[CrossRef]

K. Xue, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. Lett. 37(15), 3228–3230 (2012).
[CrossRef] [PubMed]

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107(1), 103–110 (2012).
[CrossRef]

Q. Li, K. Xue, Y. D. Li, and Q. Wang, “Experimental research on terahertz Gabor inline digital holography of concealed objects,” Appl. Opt. 51(29), 7052–7058 (2012).
[CrossRef] [PubMed]

S. H. Ding, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett. 36(11), 1993–1995 (2011).
[CrossRef] [PubMed]

Li, Z. X.

Z. X. Li, W. Shen, G. S. Tong, J. M. Tian, and L. Vu-Quoc, “On the vein-stiffening membrane structure of a dragonfly hind wing,” J. Zhejiang Univ.- SCI A 10(1), 72–81 (2009).

Liu, S.

L. Rong, Y. Li, S. Liu, W. Xiao, F. Pan, and D. Y. Wang, “Iterative solution to twin image problem in in-line digital holography,” Opt. Lasers Eng. 51(5), 553–559 (2013).
[CrossRef]

Lohmann, A.

Loic, D.

D. Loic, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Longchamp, J.-N.

T. Latychevskaia, J.-N. Longchamp, and H.-W. Fink, “When holography meets coherent diffraction imaging,” Opt. Express 20(27), 28871–28892 (2012).
[CrossRef] [PubMed]

T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “On artefact-free reconstruction of low-energy (30-250eV) electron holograms,” Ultramicroscopy, in press.

Lubk, A.

T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110(5), 472–482 (2010).
[CrossRef]

Mahon, R. J.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[CrossRef]

Matsumoto, H.

L. J. Zeng, H. Matsumoto, and K. Kawachi, “Simultaneous measurement of the shape and thickness of a dragonfly wing,” Meas. Sci. Technol. 7(12), 1728–1732 (1996).
[CrossRef]

Murphy, J. A.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[CrossRef]

Osten, W.

Pan, F.

Pedrini, G.

Polack, F.

Ren, H. H.

H. H. Ren, X. S. Wang, Y. L. Chen, and X. D. Li, “Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation,” Chin. Phys. B 21(3), 034501 (2012).
[CrossRef]

Rong, L.

Shen, W.

Z. X. Li, W. Shen, G. S. Tong, J. M. Tian, and L. Vu-Quoc, “On the vein-stiffening membrane structure of a dragonfly hind wing,” J. Zhejiang Univ.- SCI A 10(1), 72–81 (2009).

Tian, J. M.

Z. X. Li, W. Shen, G. S. Tong, J. M. Tian, and L. Vu-Quoc, “On the vein-stiffening membrane structure of a dragonfly hind wing,” J. Zhejiang Univ.- SCI A 10(1), 72–81 (2009).

Tiziani, H. J.

Tong, G. S.

Z. X. Li, W. Shen, G. S. Tong, J. M. Tian, and L. Vu-Quoc, “On the vein-stiffening membrane structure of a dragonfly hind wing,” J. Zhejiang Univ.- SCI A 10(1), 72–81 (2009).

Vu-Quoc, L.

Z. X. Li, W. Shen, G. S. Tong, J. M. Tian, and L. Vu-Quoc, “On the vein-stiffening membrane structure of a dragonfly hind wing,” J. Zhejiang Univ.- SCI A 10(1), 72–81 (2009).

Wang, D. Y.

L. Rong, Y. Li, S. Liu, W. Xiao, F. Pan, and D. Y. Wang, “Iterative solution to twin image problem in in-line digital holography,” Opt. Lasers Eng. 51(5), 553–559 (2013).
[CrossRef]

Wang, F. J.

Wang, Q.

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Research on reconstruction algorithms in 2.52 THz off-axis digital holography,” J. Infrared Millim. Terahertz Waves 33(10), 1039–1051 (2012).
[CrossRef]

K. Xue, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. Lett. 37(15), 3228–3230 (2012).
[CrossRef] [PubMed]

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107(1), 103–110 (2012).
[CrossRef]

Q. Li, K. Xue, Y. D. Li, and Q. Wang, “Experimental research on terahertz Gabor inline digital holography of concealed objects,” Appl. Opt. 51(29), 7052–7058 (2012).
[CrossRef] [PubMed]

S. H. Ding, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett. 36(11), 1993–1995 (2011).
[CrossRef] [PubMed]

Wang, X. S.

H. H. Ren, X. S. Wang, Y. L. Chen, and X. D. Li, “Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation,” Chin. Phys. B 21(3), 034501 (2012).
[CrossRef]

Xiao, W.

Xue, K.

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Research on reconstruction algorithms in 2.52 THz off-axis digital holography,” J. Infrared Millim. Terahertz Waves 33(10), 1039–1051 (2012).
[CrossRef]

K. Xue, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. Lett. 37(15), 3228–3230 (2012).
[CrossRef] [PubMed]

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107(1), 103–110 (2012).
[CrossRef]

Q. Li, K. Xue, Y. D. Li, and Q. Wang, “Experimental research on terahertz Gabor inline digital holography of concealed objects,” Appl. Opt. 51(29), 7052–7058 (2012).
[CrossRef] [PubMed]

Yin, Y. J.

H. X. Zhao, Y. J. Yin, and Z. Zhong, “Micro and nano structures and morphologies on the wing veins of dragonflies,” Chin. Sci. Bull. 55(19), 1993–1995 (2010).
[CrossRef]

Zeng, L. J.

L. J. Zeng, H. Matsumoto, and K. Kawachi, “Simultaneous measurement of the shape and thickness of a dragonfly wing,” Meas. Sci. Technol. 7(12), 1728–1732 (1996).
[CrossRef]

Zhang, Y.

Zhao, H. X.

H. X. Zhao, Y. J. Yin, and Z. Zhong, “Micro and nano structures and morphologies on the wing veins of dragonflies,” Chin. Sci. Bull. 55(19), 1993–1995 (2010).
[CrossRef]

Zhong, Z.

H. X. Zhao, Y. J. Yin, and Z. Zhong, “Micro and nano structures and morphologies on the wing veins of dragonflies,” Chin. Sci. Bull. 55(19), 1993–1995 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Experimental research on resolution improvement in CW THz digital holography,” Appl. Phys. B 107(1), 103–110 (2012).
[CrossRef]

Appl. Phys. Lett.

T. Latychevskaia and H.-W. Fink, “Coherent microscopy at resolution beyond diffraction limit using post-experimental data extrapolation,” Appl. Phys. Lett. 103(20), 204105 (2013).
[CrossRef]

Chin. Opt. Lett.

Chin. Phys. B

H. H. Ren, X. S. Wang, Y. L. Chen, and X. D. Li, “Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation,” Chin. Phys. B 21(3), 034501 (2012).
[CrossRef]

Chin. Sci. Bull.

H. X. Zhao, Y. J. Yin, and Z. Zhong, “Micro and nano structures and morphologies on the wing veins of dragonflies,” Chin. Sci. Bull. 55(19), 1993–1995 (2010).
[CrossRef]

Exp. Mech.

S. R. Jongerius and D. Lentink, “Structural analysis of a dragonfly wing,” Exp. Mech. 50(9), 1323–1334 (2010).
[CrossRef]

J. Infrared Millim. Terahertz Waves

Q. Li, S. H. Ding, Y. D. Li, K. Xue, and Q. Wang, “Research on reconstruction algorithms in 2.52 THz off-axis digital holography,” J. Infrared Millim. Terahertz Waves 33(10), 1039–1051 (2012).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Zhejiang Univ.- SCI A

Z. X. Li, W. Shen, G. S. Tong, J. M. Tian, and L. Vu-Quoc, “On the vein-stiffening membrane structure of a dragonfly hind wing,” J. Zhejiang Univ.- SCI A 10(1), 72–81 (2009).

Meas. Sci. Technol.

L. J. Zeng, H. Matsumoto, and K. Kawachi, “Simultaneous measurement of the shape and thickness of a dragonfly wing,” Meas. Sci. Technol. 7(12), 1728–1732 (1996).
[CrossRef]

Nature

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Commun.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

L. Rong, Y. Li, S. Liu, W. Xiao, F. Pan, and D. Y. Wang, “Iterative solution to twin image problem in in-line digital holography,” Opt. Lasers Eng. 51(5), 553–559 (2013).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[CrossRef] [PubMed]

Proc. R. Soc. A

D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. A 197(1051), 454–487 (1949)

Proc. SPIE

D. Loic, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).

Ultramicroscopy

T. Latychevskaia, P. Formanek, C. T. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110(5), 472–482 (2010).
[CrossRef]

Other

X. Yin, B. W.-H. Ng, and D. Abbott, Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction (Springer, 2012).

R. Mahon, A. Murphy, and W. Lanigan, Terahertz Holographic Image Reconstruction and Analysis (IEEE, 2004), pp. 749–750.

V. S. Cherkassky, B. A. Knyazev, S. V. Kozlov, V. V. Kubarev, G. N. Kulipanov, A. N. Matveenko, V. M. Popik, D. N. Root, P. D. Rudych, O. A. Shevchenko, A. V. Trifutina, and N. A. Vinokurov, Terahertz Imaging and Holography with a High-power Free Electron Laser (IEEE, 2005), pp. 337–338.

B. A. Knyazev, A. L. Balandin, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. A. Dem'yanenko, D. G. Esaev, A. A. Nikitin, V. V. Pickalov, M. G. Vlasenko, D. G. Rodionov, and O. A. Shevchenko, “Classic holography, tomography and speckle metrology using a high-power terahertz free electron laser and real-time image detectors,” in 35th International Conference on Infrared, Millimeter, and Terahertz Waves (Irmmw-Thz 2010) (2010), pp. 1–3.

T. Latychevskaia, J.-N. Longchamp, C. Escher, and H.-W. Fink, “On artefact-free reconstruction of low-energy (30-250eV) electron holograms,” Ultramicroscopy, in press.

S. G. Podorov, A. I. Bishop, D. M. Paganin, and K. M. Pavlov, “Re-sampling of inline holographic images for improved reconstruction resolution,” arXiv:0911.0520 (2009).

www.ophiropt.com .

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Digital optical microscopic image (magnification 50) of the sample dragonfly hindwing. The veins are assigned according to the map provided in [24].

Fig. 2
Fig. 2

Schematic layout of the terahertz in-line digital holography. For details see the main text.

Fig. 3
Fig. 3

Histogram of intensity values at pixel (1,1) in the sequence of 1000 hologram frames and its Gaussian fit with the center at 41.66 a.u.

Fig. 4
Fig. 4

Single frame and normalized hologram of dragonfly hindwing and the reconstructed absorption and phase distributions.

Fig. 5
Fig. 5

Single-sideband reconstructions of a dragonfly hindwing. Left column: absorption distribution. Right column: phase distribution. Top row: Twin image is removed in the bottom left corner. Bottom row: Twin image is removed in the top right corner. (Because single-sideband reconstruction removes half of the spectrum, the quantitative information about absorption and phase distribution is lost, and the intensity bars are omitted to avoid misinterpretation.)

Fig. 6
Fig. 6

Iterative reconstruction of a dragonfly hindwing. The hologram and masking support in the object domain are shown in the top row. The absorption and phase distribution reconstructed at z = 16.6 mm are shown in the bottom row. Additional reconstruction of phase distribution at z = 16.0 mm, i.e. slightly out of focus where the phase is unwrapped, is also shown.

Fig. 7
Fig. 7

Iterative reconstruction with extrapolation. 250 × 250 pixels fragment of the extrapolated hologram, hologram padding and object masking support are shown in the top row. The absorption and phase distribution reconstructed at z = 16.6 mm and additional reconstruction of phase distribution at z = 16.0 mm are shown in the bottom row.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t( x,y )= FT 1 [ FT{ H( X,Y ) }exp( 2πiz λ 1 ( λ f x ) 2 ( λ f y ) 2 ) ]
t( x,y )=exp[ a( x,y )iϕ( x,y ) ]
K=( 1 1 1 1 4 1 1 1 1 )

Metrics