Abstract

We describe a closed-loop dynamic holographic adaptive optics system. This system can be realized via one liquid crystal spatial light modulator and one CCD camera. The liquid crystal spatial light modulator is used as the wavefront sensor and corrector, as well as imaging element. CCD detects the spots at holographic image plane and at focal plane of imaging channel simultaneously. The basic principle of the system is introduced first, and then the numerical analysis is presented. On this basis, we report a practical implementation of the dynamic holographic adaptive optics system. The results show that a rapid increase of Strehl ratio and improved image quality at focal plane for deliberately introduced aberrations can be achieved, verifying the feasibility of the system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics (Academic Press, 1998), pp. 1–25.
  2. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wavefront sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000).
    [CrossRef]
  3. M. A. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25(15), 1083–1085 (2000).
    [CrossRef] [PubMed]
  4. F. Ghebremichael, G. P. Andersen, and K. S. Gurley, “Holography-based wavefront sensing,” Appl. Opt. 47(4), A62–A69 (2008).
    [CrossRef] [PubMed]
  5. G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
    [CrossRef]
  6. S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48(33), 6458–6465 (2009).
    [CrossRef] [PubMed]
  7. R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation,” Opt. Lasers Eng. 46(6), 428–439 (2008).
    [CrossRef]
  8. C. Liu, F. Xi, H. Ma, S. Huang, and Z. Jiang, “Modal wavefront sensor based on binary phase-only multiplexed computer-generated hologram,” Appl. Opt. 49(27), 5117–5124 (2010).
    [CrossRef] [PubMed]
  9. S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Appl. Opt. 51(9), 1318–1327 (2012).
    [CrossRef] [PubMed]
  10. S. Dong, T. Haist, and W. Osten, “Hybrid wavefront sensor for the fast detection of wavefront disturbances,” Appl. Opt. 51(25), 6268–6274 (2012).
    [CrossRef] [PubMed]
  11. A. D. Corbett, T. D. Wilkinson, J. J. Zhong, and L. Diaz-Santana, “Designing a holographic modal wavefront sensor for the detection of static ocular aberrations,” J. Opt. Soc. Am. A 24(5), 1266–1275 (2007).
    [CrossRef] [PubMed]
  12. F. Feng, I. H. White, and T. D. Wilkinson, “Aberration Correction for Free Space Optical Communications Using Rectangular Zernike Modal Wavefront Sensing,” J. Lightwave Technol. 32(6), 1239–1245 (2014).
    [CrossRef]
  13. A. Zepp, S. Gladysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).
  14. G. Andersen, P. Gelsinger-Austin, R. Gaddipati, P. Gaddipati, and F. Ghebremichael, “Fast, compact, autonomous holographic adaptive optics,” Opt. Express 22(8), 9432–9441 (2014).
    [CrossRef] [PubMed]
  15. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express 12(26), 6403–6409 (2004).
    [CrossRef] [PubMed]
  16. J. Munch and R. Wuerker, “Holographic technique for correcting aberrations in a telescope,” Appl. Opt. 28(7), 1312–1317 (1989).
    [CrossRef] [PubMed]
  17. G. Andersen and R. Knize, “A high resolution, holographically corrected microscope with a Fresnel lens objective at large working distances,” Opt. Express 2(13), 546–551 (1998).
    [CrossRef] [PubMed]
  18. R. Martínez-Cuenca, V. Durán, J. Arines, J. Ares, Z. Jaroszewicz, S. Bará, L. Martínez-León, and J. Lancis, “Closed-loop adaptive optics with a single element for wavefront sensing and correction,” Opt. Lett. 36(18), 3702–3704 (2011).
    [CrossRef] [PubMed]
  19. J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, “Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15(23), 15287–15292 (2007).
    [CrossRef] [PubMed]

2014 (2)

2013 (1)

A. Zepp, S. Gladysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

2012 (2)

2011 (1)

2010 (1)

2009 (2)

2008 (2)

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation,” Opt. Lasers Eng. 46(6), 428–439 (2008).
[CrossRef]

F. Ghebremichael, G. P. Andersen, and K. S. Gurley, “Holography-based wavefront sensing,” Appl. Opt. 47(4), A62–A69 (2008).
[CrossRef] [PubMed]

2007 (2)

2004 (1)

2000 (2)

1998 (1)

1989 (1)

Andersen, G.

Andersen, G. P.

Ares, J.

Arines, J.

Bará, S.

Bhatt, R.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48(33), 6458–6465 (2009).
[CrossRef] [PubMed]

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation,” Opt. Lasers Eng. 46(6), 428–439 (2008).
[CrossRef]

Booth, M. J.

Cao, Z.

Chen, K.

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
[CrossRef]

Climent, V.

Corbett, A. D.

Diaz-Santana, L.

Dong, S.

Durán, V.

Dussan, L.

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
[CrossRef]

Feng, F.

Gaddipati, P.

Gaddipati, R.

Gelsinger-Austin, P.

Ghebremichael, F.

Gladysz, S.

A. Zepp, S. Gladysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

Gupta, A. K.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48(33), 6458–6465 (2009).
[CrossRef] [PubMed]

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation,” Opt. Lasers Eng. 46(6), 428–439 (2008).
[CrossRef]

Gurley, K. S.

Haist, T.

Hu, L.

Huang, S.

Jaroszewicz, Z.

Jiang, Z.

Knize, R.

Lancis, J.

Li, D.

Liu, C.

Liu, Y.

Ma, H.

Martínez-Cuenca, R.

Martínez-León, L.

Mishra, S. K.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48(33), 6458–6465 (2009).
[CrossRef] [PubMed]

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation,” Opt. Lasers Eng. 46(6), 428–439 (2008).
[CrossRef]

Mohan, D.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48(33), 6458–6465 (2009).
[CrossRef] [PubMed]

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation,” Opt. Lasers Eng. 46(6), 428–439 (2008).
[CrossRef]

Mu, Q.

Munch, J.

Neil, M. A. A.

Osten, W.

Prado, P.

Ruppel, T.

Sawodny, O.

Sharma, A.

Stein, K.

A. Zepp, S. Gladysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

Tajahuerce, E.

White, I. H.

Wilkinson, T. D.

Wilson, T.

Wuerker, R.

Xi, F.

Xuan, L.

Zepp, A.

A. Zepp, S. Gladysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

Zhong, J. J.

Appl. Opt. (6)

J. Adv. Opt. Technol. (1)

A. Zepp, S. Gladysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” J. Adv. Opt. Technol. 2, 433–437 (2013).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Opt. Eng. 48(8), 085801 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lasers Eng. (1)

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation,” Opt. Lasers Eng. 46(6), 428–439 (2008).
[CrossRef]

Opt. Lett. (2)

Other (1)

R. K. Tyson, Principles of Adaptive Optics (Academic Press, 1998), pp. 1–25.

Supplementary Material (1)

» Media 1: AVI (12192 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The schematic diagram of DHAOS and (b) the configuration of DHAOS in numerical simulation.

Fig. 2
Fig. 2

(a) The initial CGH (phase values: black, 0; gray, π) and (b) the optical field distribution on detection plane.

Fig. 3
Fig. 3

(a) The sensitivity response curve of Z(2,2) using method 1 to calibrate DHAOS and (b) The sensitivity response curve of Z(3,1) using method 1 to calibrate DHAOS. (c) The sensitivity response curve of Z(2,2) using method 2 to calibrate DHAOS and (d) The sensitivity response curve of Z(3,1) using method 2 to calibrate DHAOS.

Fig. 4
Fig. 4

Numerical simulation diagram of DHAOS.

Fig. 5
Fig. 5

Spots on the detection plane (a) before correction, and (c) after final correction. The intensity distributions of the image spot on the right half detection plane (b) before correction, and (d) after final correction.

Fig. 6
Fig. 6

Experimental configuration of DHAOS.

Fig. 7
Fig. 7

The CGH loaded on the LC-SLM (a) before correction, (d) to implement the first and (g) final correction (phase values: black, 0; gray, π). Spots on the CCD plane, (b) before correction, (e) after one correction, and (h) after final correction (Media 1). The intensity distributions of the image spot on the right half CCD (c) before correction, (f) after one correction, and (m) after final correction.

Fig. 8
Fig. 8

(a) Improvement in Strehl ratio (relative to final frame) as a function of iterations and (b) RMS value of the residual wavefront aberration as a function of iterations.

Tables (2)

Tables Icon

Table 1 Sensitivity Matrix S

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

h 2i1 (x,y)= | O 2i1 (x,y)+ R 2i1 (x,y) | 2 = O 2i1 (x,y) 2 + R 2i1 (x,y) 2 + O 2i1 (x,y) R * 2i1 (x,y)+ O * 2i1 (x,y) R 2i1 (x,y) h 2i (x,y)= | O 2i (x,y)+ R 2i (x,y) | 2 = O 2i (x,y) 2 + R 2i (x,y) 2 + O 2i (x,y) R * 2i (x,y)+ O * 2i (x,y) R 2i (x,y)
H 2i1 (x,y)= O * 2i1 (x,y) R 2i1 (x,y) =exp{jb Z i (x,y)}×exp{jk [ (x x A ) 2 + (y y A ) 2 + z A 2 ] 1/2 } H 2i (x,y)= O * 2i (x,y) R 2i (x,y) =exp{jb Z i (x,y)}×exp{jk [ (x x B ) 2 + (y y B ) 2 + z B 2 ] 1/2 }
H 2i1 (x,y)×W(x,y)=exp{j a i Z i (x,y)+j m=1 mi n a m Z m (x,y) }×exp{jb Z i (x,y)} ×exp{jk [ (x x A ) 2 + (y y A ) 2 + z A 2 ] 1/2 } H 2i (x,y)×W(x,y)=exp{j a i Z i (x,y)+j m=1 mi n a m Z m (x,y) }×exp{jb Z i (x,y)} ×exp{jk [ (x x B ) 2 + (y y B ) 2 + z B 2 ] 1/2 }
P W = I A I B I A + I B
H 2n+1 (x,y)=Λexp{jk [ (x x C ) 2 + (y y C ) 2 + z C 2 ] 1/2 }
H(x,y)=[ m=1 2n+1 H m (x,y) ]×exp{j i=1 n c i Z i (x,y) }
W(x,y)×H(x,y)=exp{j i=1 n a i Z i (x,y) } ×[ m=1 2n+1 H m (x,y) ]×exp{j i=1 n c i Z i (x,y) } =exp{j i=1 n ( a i c i ) Z i (x,y) }×[ m=1 2n+1 H m (x,y) ]
Z= S 1 ×( P W O)

Metrics