Abstract

This paper extends the current understanding of the laser-induced forward transfer (LIFT) process to the multi-jets ejection problem. LIFT has already been used to print micrometer-sized droplets from a liquid donor substrate with single pulse experiments. Here we study the dynamics of the high-speed multi-jets formation from silver nanoparticles ink films with a time-resolved imaging technique. A galvanometric mirrors head controls the spacing between adjacent pulses by scanning the focused beam of a high repetition rate UV picosecond laser along an ink-coated donor substrate. The laser pulses interact with the liquid film and generate cavitation bubbles that propel the ink away from the substrate and form the jets. When the spacing between consecutive pulses is substantially higher than the maximum diameter of the bubbles, there is no interaction between adjacent jets, and these remain unperturbed. However, when the pulses are brought closer significant jet-jet interaction takes place, which results in a clear deviation from the single jet dynamics. Thus, the cavitation bubbles acquire different shapes, the ink is ejected faster and along different directions depending on the spacing between the pulses, and each bubble alters the evolution of the previous one and shifts away from it.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,’’ J. Appl. Phys. Adv. Mater. 60, 1538–1539 (1986).
  2. C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253(19), 8328–8333 (2007).
    [CrossRef]
  3. L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
    [CrossRef]
  4. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).
  5. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
    [CrossRef] [PubMed]
  6. G. B. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82(3), 463–465 (2003).
    [CrossRef]
  7. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
    [CrossRef]
  8. L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
    [CrossRef]
  9. B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
    [CrossRef]
  10. A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
    [CrossRef]
  11. L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
    [CrossRef] [PubMed]
  12. J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
    [CrossRef] [PubMed]
  13. A. S. Holmes, S. M. Saidam, and C. Wang, “Laser-assisted assembly for hybrid microelectromechanical systems,” in Proceedings of the International Congress on Applications of Lasers & Electro-Optics (Orlando, Fla.: LIA, Laser Institute of America, 2010), pp. D1–D9.
  14. A. J. Birnbaum, H. Kim, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys. Adv. Mater. 99, 711–716 (2010).
  15. N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
    [CrossRef]
  16. J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
    [CrossRef]
  17. L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
    [CrossRef]
  18. L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
    [CrossRef]
  19. R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro Nanoen. 2(1), 21–25 (2007).
    [CrossRef]
  20. M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys. Adv. Mater. 106, 471–478 (2012).
  21. A. Piqué, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoen. 3(3), 163–169 (2008).
    [CrossRef]
  22. P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
    [CrossRef]
  23. M. Duocastella, M. Colina, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Study of the laser-induced forward transfer of liquids for laser bioprinting,” Appl. Surf. Sci. 253(19), 7855–7859 (2007).
    [CrossRef]
  24. M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys. Adv. Mater. 93, 941–945 (2008).
  25. I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
    [CrossRef]
  26. M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys. Adv. Mater. 93, 453–456 (2008).
  27. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
    [CrossRef]
  28. A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).
  29. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).
    [CrossRef]
  30. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer : influence of the material properties,” Appl. Surf. Sci. 254(4), 1322–1326 (2007).
    [CrossRef]
  31. D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
    [CrossRef]
  32. M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid. 11(2), 199–207 (2011).
    [CrossRef]
  33. A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
    [CrossRef]
  34. A. Patrascioiu, J. M. Fernández-Pradas, A. Palla-Papavlu, J. L. Morenza, and P. Serra, “Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection,” Microfluid. Nanofluid. 16(1-2), 55–63 (2014).
    [CrossRef]
  35. E. Biver, L. Rapp, A.-P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
    [CrossRef]
  36. C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
    [CrossRef]
  37. R. Hickling and M. S. Plesset, “Collapse and rebound of a spherical bubble in water,” Phys. Fluids 7(1), 7–14 (1964).
    [CrossRef]
  38. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
    [CrossRef]
  39. B. Han, B. Yang, Z. H. Shen, J. Lu, and X.-W. Ni, “Numerical investigation of the influences of liquid viscosity, surface tension and initial bubble gas content on the dynamic properties of a laser-induced cavitation bubble,” Laser. Eng. 19, 307–316 (2010).
  40. E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14(1), 85–92 (2002).
    [CrossRef]
  41. Z. Li, L. Sun, Z. Zong, and J. Dong, “Some dynamical characteristics of a non-spherical bubble in proximity to a free surface,” Acta Mech. 223(11), 2331–2355 (2012).
    [CrossRef]
  42. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. Adv. Mater. 106, 479–487 (2012).
  43. F. C. Brasz, J. H. Yang, and C. B. Arnold, “Tilting of adjacent laser-induced liquid jets,” Microfluid. Nanofluid. (published online: 08 June 2014)

2014 (3)

A. Patrascioiu, J. M. Fernández-Pradas, A. Palla-Papavlu, J. L. Morenza, and P. Serra, “Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection,” Microfluid. Nanofluid. 16(1-2), 55–63 (2014).
[CrossRef]

E. Biver, L. Rapp, A.-P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[CrossRef]

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[CrossRef]

2013 (2)

J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
[CrossRef]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).

2012 (3)

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys. Adv. Mater. 106, 471–478 (2012).

Z. Li, L. Sun, Z. Zong, and J. Dong, “Some dynamical characteristics of a non-spherical bubble in proximity to a free surface,” Acta Mech. 223(11), 2331–2355 (2012).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. Adv. Mater. 106, 479–487 (2012).

2011 (4)

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid. 11(2), 199–207 (2011).
[CrossRef]

L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
[CrossRef]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[CrossRef]

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
[CrossRef] [PubMed]

2010 (6)

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).
[CrossRef]

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

A. J. Birnbaum, H. Kim, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys. Adv. Mater. 99, 711–716 (2010).

B. Han, B. Yang, Z. H. Shen, J. Lu, and X.-W. Ni, “Numerical investigation of the influences of liquid viscosity, surface tension and initial bubble gas content on the dynamic properties of a laser-induced cavitation bubble,” Laser. Eng. 19, 307–316 (2010).

2009 (3)

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

2008 (4)

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys. Adv. Mater. 93, 453–456 (2008).

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys. Adv. Mater. 93, 941–945 (2008).

A. Piqué, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoen. 3(3), 163–169 (2008).
[CrossRef]

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

2007 (6)

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253(19), 8328–8333 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro Nanoen. 2(1), 21–25 (2007).
[CrossRef]

M. Duocastella, M. Colina, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Study of the laser-induced forward transfer of liquids for laser bioprinting,” Appl. Surf. Sci. 253(19), 7855–7859 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer : influence of the material properties,” Appl. Surf. Sci. 254(4), 1322–1326 (2007).
[CrossRef]

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

2006 (1)

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

2005 (1)

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[CrossRef]

2004 (2)

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
[CrossRef]

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
[CrossRef]

2003 (1)

G. B. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82(3), 463–465 (2003).
[CrossRef]

2002 (1)

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14(1), 85–92 (2002).
[CrossRef]

2001 (1)

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

1998 (1)

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

1986 (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,’’ J. Appl. Phys. Adv. Mater. 60, 1538–1539 (1986).

1964 (1)

R. Hickling and M. S. Plesset, “Collapse and rebound of a spherical bubble in water,” Phys. Fluids 7(1), 7–14 (1964).
[CrossRef]

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,’’ J. Appl. Phys. Adv. Mater. 60, 1538–1539 (1986).

Ailuno, J.

Akhatov, I.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Alloncle, A. P.

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
[CrossRef] [PubMed]

L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
[CrossRef]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

Alloncle, A.-P.

E. Biver, L. Rapp, A.-P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[CrossRef]

Arnold, C. B.

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid. 11(2), 199–207 (2011).
[CrossRef]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[CrossRef]

Auyeung, R. C. Y.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro Nanoen. 2(1), 21–25 (2007).
[CrossRef]

Banks, D. P.

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

Barret, M.

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

Bernhard, S.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[CrossRef]

Birnbaum, A. J.

A. J. Birnbaum, H. Kim, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys. Adv. Mater. 99, 711–716 (2010).

Biver, E.

E. Biver, L. Rapp, A.-P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[CrossRef]

Blake, J. R.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
[CrossRef]

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14(1), 85–92 (2002).
[CrossRef]

Blanchet, G. B.

G. B. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82(3), 463–465 (2003).
[CrossRef]

Bohandy, J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,’’ J. Appl. Phys. Adv. Mater. 60, 1538–1539 (1986).

Boutopoulos, C.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[CrossRef]

Brown, M. S.

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid. 11(2), 199–207 (2011).
[CrossRef]

Brujan, E. A.

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14(1), 85–92 (2002).
[CrossRef]

Chai, L.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Charipar, N. A.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

A. J. Birnbaum, H. Kim, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys. Adv. Mater. 99, 711–716 (2010).

Charron, L.

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253(19), 8328–8333 (2007).
[CrossRef]

Chichkov, B. N.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. Adv. Mater. 106, 479–487 (2012).

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Cibert, C.

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

Colina, M.

M. Duocastella, M. Colina, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Study of the laser-induced forward transfer of liquids for laser bioprinting,” Appl. Surf. Sci. 253(19), 7855–7859 (2007).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
[CrossRef]

Collot, P.

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

Córdoba, C.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).

Cox, E.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
[CrossRef]

Delaporte, P.

E. Biver, L. Rapp, A.-P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[CrossRef]

L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
[CrossRef]

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
[CrossRef] [PubMed]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

Diallo, A. K.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Dinca, V.

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

Dinescu, M.

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

Domínguez, J.

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys. Adv. Mater. 93, 941–945 (2008).

Dong, J.

Z. Li, L. Sun, Z. Zong, and J. Dong, “Some dynamical characteristics of a non-spherical bubble in proximity to a free surface,” Acta Mech. 223(11), 2331–2355 (2012).
[CrossRef]

Duocastella, M.

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys. Adv. Mater. 106, 471–478 (2012).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys. Adv. Mater. 93, 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys. Adv. Mater. 93, 453–456 (2008).

M. Duocastella, M. Colina, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Study of the laser-induced forward transfer of liquids for laser bioprinting,” Appl. Surf. Sci. 253(19), 7855–7859 (2007).
[CrossRef]

Eason, R. W.

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

Fages, F.

L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
[CrossRef]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Fardel, R.

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer : influence of the material properties,” Appl. Surf. Sci. 254(4), 1322–1326 (2007).
[CrossRef]

Fernández-Pradas, J. M.

A. Patrascioiu, J. M. Fernández-Pradas, A. Palla-Papavlu, J. L. Morenza, and P. Serra, “Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection,” Microfluid. Nanofluid. 16(1-2), 55–63 (2014).
[CrossRef]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys. Adv. Mater. 93, 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys. Adv. Mater. 93, 453–456 (2008).

M. Duocastella, M. Colina, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Study of the laser-induced forward transfer of liquids for laser bioprinting,” Appl. Surf. Sci. 253(19), 7855–7859 (2007).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
[CrossRef]

Fincher, C. R.

G. B. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82(3), 463–465 (2003).
[CrossRef]

Fotakis, C.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

Gao, F.

G. B. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82(3), 463–465 (2003).
[CrossRef]

Gazia, R.

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

Germain, C.

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253(19), 8328–8333 (2007).
[CrossRef]

Grigoropoulos, C. P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

Han, B.

B. Han, B. Yang, Z. H. Shen, J. Lu, and X.-W. Ni, “Numerical investigation of the influences of liquid viscosity, surface tension and initial bubble gas content on the dynamic properties of a laser-induced cavitation bubble,” Laser. Eng. 19, 307–316 (2010).

Hickling, R.

R. Hickling and M. S. Plesset, “Collapse and rebound of a spherical bubble in water,” Phys. Fluids 7(1), 7–14 (1964).
[CrossRef]

Jia, W.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Kafetzopoulos, D.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[CrossRef]

Kalpouzos, C.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

Kalpyris, I.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[CrossRef]

Kapsetaki, M.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[CrossRef]

Karaiskou, A.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[CrossRef]

Kattamis, N. T.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[CrossRef]

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid. 11(2), 199–207 (2011).
[CrossRef]

Kaur, K.

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

Keen, G. S.

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14(1), 85–92 (2002).
[CrossRef]

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,’’ J. Appl. Phys. Adv. Mater. 60, 1538–1539 (1986).

Kim, H.

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys. Adv. Mater. 106, 471–478 (2012).

A. J. Birnbaum, H. Kim, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys. Adv. Mater. 99, 711–716 (2010).

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro Nanoen. 2(1), 21–25 (2007).
[CrossRef]

Kiyan, R.

Koch, J.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. Adv. Mater. 106, 479–487 (2012).

Kuznetsov, A. I.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. Adv. Mater. 106, 479–487 (2012).

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[CrossRef] [PubMed]

Lauterborn, W.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Li, Z.

Z. Li, L. Sun, Z. Zong, and J. Dong, “Some dynamical characteristics of a non-spherical bubble in proximity to a free surface,” Acta Mech. 223(11), 2331–2355 (2012).
[CrossRef]

Lilge, L.

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253(19), 8328–8333 (2007).
[CrossRef]

Lindau, O.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Lippert, T.

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer : influence of the material properties,” Appl. Surf. Sci. 254(4), 1322–1326 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Lippert, T. K.

J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
[CrossRef]

Loo, Y.-L.

G. B. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82(3), 463–465 (2003).
[CrossRef]

Lu, J.

B. Han, B. Yang, Z. H. Shen, J. Lu, and X.-W. Ni, “Numerical investigation of the influences of liquid viscosity, surface tension and initial bubble gas content on the dynamic properties of a laser-induced cavitation bubble,” Laser. Eng. 19, 307–316 (2010).

Luculescu, C.

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

Mailis, S.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

Mathews, S. A.

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro Nanoen. 2(1), 21–25 (2007).
[CrossRef]

Mattle, T.

J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
[CrossRef]

McDaniel, N. D.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[CrossRef]

Mettin, R.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Morenza, J. L.

A. Patrascioiu, J. M. Fernández-Pradas, A. Palla-Papavlu, J. L. Morenza, and P. Serra, “Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection,” Microfluid. Nanofluid. 16(1-2), 55–63 (2014).
[CrossRef]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys. Adv. Mater. 93, 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys. Adv. Mater. 93, 453–456 (2008).

M. Duocastella, M. Colina, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Study of the laser-induced forward transfer of liquids for laser bioprinting,” Appl. Surf. Sci. 253(19), 7855–7859 (2007).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
[CrossRef]

Nagel, M.

J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
[CrossRef]

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer : influence of the material properties,” Appl. Surf. Sci. 254(4), 1322–1326 (2007).
[CrossRef]

Nénon, S.

L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
[CrossRef]

Ni, X.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Ni, X.-W.

B. Han, B. Yang, Z. H. Shen, J. Lu, and X.-W. Ni, “Numerical investigation of the influences of liquid viscosity, surface tension and initial bubble gas content on the dynamic properties of a laser-induced cavitation bubble,” Laser. Eng. 19, 307–316 (2010).

Nüesch, F.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer : influence of the material properties,” Appl. Surf. Sci. 254(4), 1322–1326 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Nüesch, F. A.

J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
[CrossRef]

Otto, S. R.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
[CrossRef]

Palla-Papavlu, A.

A. Patrascioiu, J. M. Fernández-Pradas, A. Palla-Papavlu, J. L. Morenza, and P. Serra, “Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection,” Microfluid. Nanofluid. 16(1-2), 55–63 (2014).
[CrossRef]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

Papakonstantinou, P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

Papazoglou, D. G.

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[CrossRef]

Patrascioiu, A.

A. Patrascioiu, J. M. Fernández-Pradas, A. Palla-Papavlu, J. L. Morenza, and P. Serra, “Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection,” Microfluid. Nanofluid. 16(1-2), 55–63 (2014).
[CrossRef]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).

Pearson, A.

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
[CrossRef]

Piqué, A.

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys. Adv. Mater. 106, 471–478 (2012).

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

A. J. Birnbaum, H. Kim, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys. Adv. Mater. 99, 711–716 (2010).

A. Piqué, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoen. 3(3), 163–169 (2008).
[CrossRef]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro Nanoen. 2(1), 21–25 (2007).
[CrossRef]

Plesset, M. S.

R. Hickling and M. S. Plesset, “Collapse and rebound of a spherical bubble in water,” Phys. Fluids 7(1), 7–14 (1964).
[CrossRef]

Rapp, L.

E. Biver, L. Rapp, A.-P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[CrossRef]

L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
[CrossRef]

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
[CrossRef] [PubMed]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

Rogers, J.

G. B. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82(3), 463–465 (2003).
[CrossRef]

Sanaur, S.

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

Sentis, M.

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

Serpetzoglou, E.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[CrossRef]

Serra, P.

A. Patrascioiu, J. M. Fernández-Pradas, A. Palla-Papavlu, J. L. Morenza, and P. Serra, “Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection,” Microfluid. Nanofluid. 16(1-2), 55–63 (2014).
[CrossRef]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys. Adv. Mater. 106, 471–478 (2012).

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys. Adv. Mater. 93, 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys. Adv. Mater. 93, 453–456 (2008).

M. Duocastella, M. Colina, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Study of the laser-induced forward transfer of liquids for laser bioprinting,” Appl. Surf. Sci. 253(19), 7855–7859 (2007).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
[CrossRef]

Sevilla, L.

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
[CrossRef]

Shaw-Stewart, J.

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

Shaw-Stewart, J. R. H.

J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
[CrossRef]

Shen, Z. H.

B. Han, B. Yang, Z. H. Shen, J. Lu, and X.-W. Ni, “Numerical investigation of the influences of liquid viscosity, surface tension and initial bubble gas content on the dynamic properties of a laser-induced cavitation bubble,” Laser. Eng. 19, 307–316 (2010).

Sun, L.

Z. Li, L. Sun, Z. Zong, and J. Dong, “Some dynamical characteristics of a non-spherical bubble in proximity to a free surface,” Acta Mech. 223(11), 2331–2355 (2012).
[CrossRef]

Thomas, B.

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

Topolnikov, A.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Tsui, Y.

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253(19), 8328–8333 (2007).
[CrossRef]

Unger, C.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. Adv. Mater. 106, 479–487 (2012).

Vainos, N. A.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

Vakhitova, N.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

Videlot-Ackermann, C.

L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
[CrossRef]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Vogel, A.

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14(1), 85–92 (2002).
[CrossRef]

Wang, C.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Wang, J.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

Wang, Z.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Wokaun, A.

J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer : influence of the material properties,” Appl. Surf. Sci. 254(4), 1322–1326 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Yang, B.

B. Han, B. Yang, Z. H. Shen, J. Lu, and X.-W. Ni, “Numerical investigation of the influences of liquid viscosity, surface tension and initial bubble gas content on the dynamic properties of a laser-induced cavitation bubble,” Laser. Eng. 19, 307–316 (2010).

Yang, L.

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

Zergioti, I.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[CrossRef]

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

Zong, Z.

Z. Li, L. Sun, Z. Zong, and J. Dong, “Some dynamical characteristics of a non-spherical bubble in proximity to a free surface,” Acta Mech. 223(11), 2331–2355 (2012).
[CrossRef]

Acta Mech. (1)

Z. Li, L. Sun, Z. Zong, and J. Dong, “Some dynamical characteristics of a non-spherical bubble in proximity to a free surface,” Acta Mech. 223(11), 2331–2355 (2012).
[CrossRef]

Adv. Mater. (1)

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

Appl. Phys. Adv. Mater. (7)

A. J. Birnbaum, H. Kim, N. A. Charipar, and A. Piqué, “Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices,” Appl. Phys. Adv. Mater. 99, 711–716 (2010).

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys. Adv. Mater. 106, 471–478 (2012).

M. Duocastella, J. M. Fernández-Pradas, J. Domínguez, P. Serra, and J. L. Morenza, “Printing biological solutions through laser-induced forward transfer,” Appl. Phys. Adv. Mater. 93, 941–945 (2008).

M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Jet formation in the laser forward transfer of liquids,” Appl. Phys. Adv. Mater. 93, 453–456 (2008).

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer, ” Appl. Phys. Adv. Mater. 110, 751–755 (2013).

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. Adv. Mater. 106, 479–487 (2012).

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. Adv. Mater. 66, 579–582 (1998).

Appl. Phys. Lett. (6)

G. B. Blanchet, Y.-L. Loo, J. Rogers, F. Gao, and C. R. Fincher, “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett. 82(3), 463–465 (2003).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

L. Yang, C. Wang, X. Ni, Z. Wang, W. Jia, and L. Chai, “Microdroplet deposition of copper film by femtosecond laser-induced forward transfer,” Appl. Phys. Lett. 89(16), 161110 (2006).
[CrossRef]

I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials,” Appl. Phys. Lett. 86(16), 163902 (2005).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639–1641 (2004).
[CrossRef]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Appl. Surf. Sci. (7)

L. Rapp, S. Nénon, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Multilayer laser printing for Organic Thin Film Transistors,” Appl. Surf. Sci. 257(12), 5152–5155 (2011).
[CrossRef]

M. Duocastella, M. Colina, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Study of the laser-induced forward transfer of liquids for laser bioprinting,” Appl. Surf. Sci. 253(19), 7855–7859 (2007).
[CrossRef]

C. Germain, L. Charron, L. Lilge, and Y. Tsui, “Electrodes for microfluidic devices produced by laser induced forward transfer,” Appl. Surf. Sci. 253(19), 8328–8333 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser forward transfer using a sacrificial layer : influence of the material properties,” Appl. Surf. Sci. 254(4), 1322–1326 (2007).
[CrossRef]

E. Biver, L. Rapp, A.-P. Alloncle, and P. Delaporte, “Multi-jets formation using laser forward transfer,” Appl. Surf. Sci. 302, 153–158 (2014).
[CrossRef]

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films,” Appl. Surf. Sci. 254(4), 1206–1210 (2007).
[CrossRef]

Eng. Anal. Bound. Elem. (1)

A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem. 28(4), 295–313 (2004).
[CrossRef]

Europhys. Lett. (1)

D. P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. W. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[CrossRef]

J. Appl. Phys. (2)

J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer,” J. Appl. Phys. 113(4), 043104 (2013).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

J. Appl. Phys. Adv. Mater. (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,’’ J. Appl. Phys. Adv. Mater. 60, 1538–1539 (1986).

J. Laser Micro Nanoen. (2)

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro Nanoen. 2(1), 21–25 (2007).
[CrossRef]

A. Piqué, “Digital microfabrication by laser decal transfer,” J. Laser Micro Nanoen. 3(3), 163–169 (2008).
[CrossRef]

J. Opt. (1)

A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, and M. Dinescu, “Laser induced forward transfer of soft materials,” J. Opt. 12(12), 124014 (2010).
[CrossRef]

Laser. Eng. (1)

B. Han, B. Yang, Z. H. Shen, J. Lu, and X.-W. Ni, “Numerical investigation of the influences of liquid viscosity, surface tension and initial bubble gas content on the dynamic properties of a laser-induced cavitation bubble,” Laser. Eng. 19, 307–316 (2010).

Microfluid. Nanofluid. (3)

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid. 11(2), 199–207 (2011).
[CrossRef]

A. Patrascioiu, J. M. Fernández-Pradas, A. Palla-Papavlu, J. L. Morenza, and P. Serra, “Laser-generated liquid microjets: correlation between bubble dynamics and liquid ejection,” Microfluid. Nanofluid. 16(1-2), 55–63 (2014).
[CrossRef]

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluid. 16(3), 493–500 (2014).
[CrossRef]

Opt. Express (2)

Org. Electron. (1)

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Ambient laser direct-write printing of a patterned organo-metallic electroluminescent device,” Org. Electron. 12(7), 1152–1158 (2011).
[CrossRef]

Phys. Fluids (3)

R. Hickling and M. S. Plesset, “Collapse and rebound of a spherical bubble in water,” Phys. Fluids 7(1), 7–14 (1964).
[CrossRef]

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001).
[CrossRef]

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14(1), 85–92 (2002).
[CrossRef]

Thin Solid Films (1)

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Sessile droplet formation in the laser-induced forward transfer of liquids: a time-resolved imaging study,” Thin Solid Films 518(18), 5321–5325 (2010).
[CrossRef]

Other (2)

A. S. Holmes, S. M. Saidam, and C. Wang, “Laser-assisted assembly for hybrid microelectromechanical systems,” in Proceedings of the International Congress on Applications of Lasers & Electro-Optics (Orlando, Fla.: LIA, Laser Institute of America, 2010), pp. D1–D9.

F. C. Brasz, J. H. Yang, and C. B. Arnold, “Tilting of adjacent laser-induced liquid jets,” Microfluid. Nanofluid. (published online: 08 June 2014)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Shadowgraphy images of a single-jet ejection event at several delays after the laser pulse (the dashed line shows the position of the surface of the ink layer).

Fig. 2
Fig. 2

Diameter of the base of the cavitation bubble for a single-jet event as a function of time, from 0.25 to 5 µs. Insert: from 0.05 to 1.6 µs (similar conditions). The solid lines are guides for the eye.

Fig. 3
Fig. 3

Scheme of the donor substrate (grey top rectangle) and the state of the ink layer as the cavitation bubble from the second laser pulse (on the right) reaches its maximum lateral expansion (~2.25 µs after the first pulse, for a delay between the laser pulses of 2 µs). The vertical arrows labeled 1 and 2 represent the position of the incoming laser pulses and X is the inter-pulse distance. C is the distance between adjacent cavitation bubbles when the second one reaches its maximum radius.

Fig. 4
Fig. 4

Shadowgraphy images for multi-jets ejection at several delays after the laser pulse. The spacing between consecutive pulses is 26 µm.

Fig. 5
Fig. 5

Shadowgraphy images for multi-jets ejection at several delays after the laser pulse. The spacing between consecutive pulses is 21 µm.

Fig. 6
Fig. 6

Shadowgraphy images for multi-jets ejection at several delays after the laser pulse. The spacing between consecutive pulses is 15 µm.

Fig. 7
Fig. 7

Shadowgraphy images for multi-jets ejection at several delays after the laser pulse. The spacing between consecutive pulses is 10 µm.

Fig. 8
Fig. 8

Scheme representing a multijet ejection event at a time t for which the last generated bubble corresponds to bubble n. The labeled vertical arrows represent the position of the incoming laser pulses. Sn(t) is the time-dependant distance between pulse n and the center of the base of the cavitation bubble n. This scheme is a general description of the measured distances and does not illustrate the role of the interactions between the bubbles during the multi-jets ejection.

Tables (2)

Tables Icon

Table 1 Initial ejection speeds, extracted from the shadowgraphy images for both single-jet and multi-jets ejections corresponding to 4 different spacings between consecutive pulses (second bubbles). The speeds are obtained by linear fit from the position versus time plots. The standard error is around ± 6 m/s.

Tables Icon

Table 2 Relevant parameters corresponding to several pulses and spacings between them: 1) Measured shift Sn(t), in µm, between pulse n and the center of the base of cavitation bubble n, for t = 0.2 and 1 µs after pulse n, and 2) Distance between the shifted cavitation bubble n and pulse n + 1, in µm, obtained by subtracting the shift from the pulse-to-pulse distance. The error is estimated as ± 1 µm. Sn(tn + 0.2 µs) was measured only for jets 2 and 3.

Metrics