Abstract

We propose and demonstrate plasmonic nano-comb (PNC) structures for efficient large-area second-harmonic generation (SHG). The PNCs are made of 250 nm-thick gold film and have equally-spaced 30 nm-slits filled with ployvinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)). The PNC with 1.0 μm-spacing couples resonantly with 1.56 μm 100-fs laser beams. For the 1.0 μm-spacing PNCs under the fixed-pump-power condition, the nonlinear SHG power remains almost independent of the pump diameter ranging from 2 μm to 6 μm. The SHG power from the resonant PNC is measured to be 8 times larger than that of the single-nano-gap metallic structure, when the pump beam is tightly-focused to 2 μm in diameter in both cases. This relative enhancement of the total nonlinear SHG signal power reaches up to >200 when the pump beam diameter is increased to 6 μm. We attribute this unusual phenomenon to the resonant coupling of the finite-size pump wave with the finite-size one-dimensional plasmonic mode.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
    [CrossRef]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  3. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
    [CrossRef]
  4. W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin-film phosphor,” J. Electrochem. Soc. 156(12), J370–J374 (2009).
    [CrossRef]
  5. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
    [CrossRef] [PubMed]
  6. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
    [CrossRef] [PubMed]
  7. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  8. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
    [CrossRef] [PubMed]
  9. J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
    [CrossRef] [PubMed]
  10. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
    [CrossRef]
  11. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
    [CrossRef] [PubMed]
  12. N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
    [CrossRef]
  13. B. Ploss and B. Ploss, “Dielectric nonlinearity of PVDF–TrFE copolymer,” Polymer (Guildf.) 41(16), 6087–6093 (2000).
    [CrossRef]
  14. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  15. C. Forestiere, A. Capretti, and G. Miano, “Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources,” J. Opt. Soc. Am. B 30(9), 2355–2364 (2013).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics Second Edition (Academic, 2003), Chap. 2.
  17. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 9.
  18. G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
    [CrossRef] [PubMed]

2013 (3)

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[CrossRef] [PubMed]

C. Forestiere, A. Capretti, and G. Miano, “Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources,” J. Opt. Soc. Am. B 30(9), 2355–2364 (2013).
[CrossRef]

2011 (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
[CrossRef]

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

2010 (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

2009 (3)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[CrossRef]

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin-film phosphor,” J. Electrochem. Soc. 156(12), J370–J374 (2009).
[CrossRef]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

2005 (2)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[CrossRef] [PubMed]

2004 (1)

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

B. Ploss and B. Ploss, “Dielectric nonlinearity of PVDF–TrFE copolymer,” Polymer (Guildf.) 41(16), 6087–6093 (2000).
[CrossRef]

Akemeier, D.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bratschitsch, R.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Brongersma, M. L.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Butterfield, F. L.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[CrossRef] [PubMed]

Cai, W.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Capretti, A.

Chao, W.-H.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin-film phosphor,” J. Electrochem. Soc. 156(12), J370–J374 (2009).
[CrossRef]

Chen, V. W.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[CrossRef] [PubMed]

Dal Negro, L.

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[CrossRef]

Farrer, R. A.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[CrossRef] [PubMed]

Forestiere, C.

Fourkas, J. T.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[CrossRef] [PubMed]

Halas, N. J.

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[CrossRef] [PubMed]

Hütten, A.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Ishi, T.

Jackson, J. B.

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[CrossRef] [PubMed]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[CrossRef]

Knittel, V.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Kovacev, M.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Leitenstorfer, A.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Linke, R. A.

Miano, G.

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[CrossRef]

Morgner, U.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[CrossRef]

Nagy, T.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Nahata, A.

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Noack, M.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
[CrossRef]

Ohashi, K.

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Pfullmann, N.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Ploss, B.

B. Ploss and B. Ploss, “Dielectric nonlinearity of PVDF–TrFE copolymer,” Polymer (Guildf.) 41(16), 6087–6093 (2000).
[CrossRef]

B. Ploss and B. Ploss, “Dielectric nonlinearity of PVDF–TrFE copolymer,” Polymer (Guildf.) 41(16), 6087–6093 (2000).
[CrossRef]

Rausch, S.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Reinhardt, C.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Tsai, C.-S.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin-film phosphor,” J. Electrochem. Soc. 156(12), J370–J374 (2009).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
[CrossRef]

Vasudev, A. P.

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Walsh, G. F.

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[CrossRef] [PubMed]

Waltermann, C.

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Wu, R.-J.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin-film phosphor,” J. Electrochem. Soc. 156(12), J370–J374 (2009).
[CrossRef]

Wu, T.-B.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin-film phosphor,” J. Electrochem. Soc. 156(12), J370–J374 (2009).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

J. Electrochem. Soc. (1)

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from metal-island-coated YAG:Ce thin-film phosphor,” J. Electrochem. Soc. 156(12), J370–J374 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (3)

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[CrossRef] [PubMed]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142 (2005).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photon. (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3(11), 654–657 (2009).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon. 5(2), 83–90 (2011).
[CrossRef]

Nature (1)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner, “Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation,” New J. Phys. 15(9), 093027 (2013).
[CrossRef]

Opt. Lett. (1)

Polymer (Guildf.) (1)

B. Ploss and B. Ploss, “Dielectric nonlinearity of PVDF–TrFE copolymer,” Polymer (Guildf.) 41(16), 6087–6093 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. B. Jackson and N. J. Halas, “Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates,” Proc. Natl. Acad. Sci. U.S.A. 101(52), 17930–17935 (2004).
[CrossRef] [PubMed]

Science (1)

W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science 333(6050), 1720–1723 (2011).
[CrossRef] [PubMed]

Other (3)

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

R. W. Boyd, Nonlinear Optics Second Edition (Academic, 2003), Chap. 2.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a plasmonic nano-comb (PNC) structure. d is the pump beam diameter. SEM pictures of (b) top and (c) side views. p is the periodicity. |E|2 profiles for (d) trapezoidal mesa geometry and (e) rectangular gap geometry by finite-difference time-domain computations.

Fig. 2
Fig. 2

(a) Schematic of measurement setup. (LPF: long pass filter, LP: linear polarizer, HWP: half wave plate, BPF: band pass filter), (b) Typical nonlinear signal spectrum, (c) Measured nonlinear signals as a function of pump intensity at 780 nm and 520 nm.

Fig. 3
Fig. 3

(a) Structural scanning: P measured (black square line) and calculated (red circle line) as a function of spacing p with fixed d = 3.0 μm. (b) Measured P as a function of pump beam diameter d for ① a single slit and slit arrays with ② p = 0.5 μm, ③ 1.0 μm and ④ 1.5 μm (different samples from (a)). (c) Images of the second harmonics for pumping diameters of 2.0 μm, 3.1 μm and 6.1 μm, respectively.

Fig. 4
Fig. 4

(a) Relative enhancement spectra of electric field intensity in the nano-gap when d = 10 μm. (b) Relative enhancement of E-field intensity as a function of pump size. (c) k-space profiles of the plasmonic mode of 1.0-μm-spacing PNC and incident waves of different sizes. (d) Calculated total SHG powers as a function of d.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 2ω = C 0 ( P ω /Δa ) 2 Δ a nl = D 0 ( | E inc | 2 ) 2 Δ a nl

Metrics