Abstract

A terahertz parametric oscillator based on KTiOAsO4 crystal is demonstrated for the first time. With the near-forward scattering configuration X(ZZ)X + Δφ, the polarizations of the pump, the Stokes and the generated THz waves are parallel to the z-axis of the crystal KTA. When the incident angle θext of the pump wave is changed from 1.875° to 6.500°, the THz wave is intermittently tuned from 3.59 to 3.96 THz, from 4.21 to 4.50 THz, from 4.90 to 5.16 THz, from 5.62 to 5.66 THz and from 5.92 to 6.43 THz. The obtained maximum THz wave energy is 627 nJ at 4.30 THz with a pump energy of 100 mJ. It is believed that the terahertz wave generation is caused by the stimulated scattering of the polaritons associated with the most intensive transverse A1 mode of 233.8 cm−1. Four much weaker transverse A1 modes of 132.9 cm−1, 156.3 cm−1,175.1 cm−1, and 188.4 cm−1 cause four frequency gaps, from 3.97 THz to 4.20 THz, from 4.51 to 4.89 THz, from 5.17 to 5.61 THz and from 5.67 to 5.91 THz, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
    [CrossRef]
  2. L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, “Properties of doped and undoped crystals of single domain KTiOAsO4,” Appl. Phys. Lett. 62(4), 346–348 (1993).
    [CrossRef]
  3. Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, Y. X. Sun, S. J. Zhang, and Z. J. Liu, “Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm,” Opt. Lett. 34(14), 2183–2185 (2009).
    [CrossRef] [PubMed]
  4. P. Zeil, A. Zukauskas, S. Tjörnhammar, C. Canalias, V. Pasiskevicius, and F. Laurell, “High-power continuous-wave frequency-doubling in KTiOAsO4.,” Opt. Express 21(25), 30453–30459 (2013).
    [CrossRef] [PubMed]
  5. H. T. Huang, D. Y. Shen, J. L. He, H. Chen, and Y. Wang, “Nanosecond nonlinear Čerenkov conical beams generation by intracavity sum frequency mixing in KTiOAsO4 crystal,” Opt. Lett. 38(4), 576–578 (2013).
    [CrossRef] [PubMed]
  6. A. H. Kung, “Narrowband mid-infrared generation using KTiOAsO4,” Appl. Phys. Lett. 65(9), 1082–1084 (1994).
    [CrossRef]
  7. M. S. Webb, P. F. Moulton, J. J. Kasinski, R. L. Burnham, G. Loiacono, and R. Stolzenberger, “High-average-power KTiOAsO4 optical parametric oscillator,” Opt. Lett. 23(15), 1161–1163 (1998).
    [CrossRef] [PubMed]
  8. F. Bai, Q. P. Wang, Z. J. Liu, X. Y. Zhang, X. B. Wan, W. X. Lan, G. F. Jin, X. T. Tao, and Y. X. Sun, “Theoretical and experimental studies on output characteristics of an intracavity KTA OPO,” Opt. Express 20(2), 807–815 (2012).
    [CrossRef] [PubMed]
  9. Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. Zhang, and H. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express 16(21), 17092–17097 (2008).
    [CrossRef] [PubMed]
  10. Z. J. Liu, Q. P. Wang, X. Y. Zhang, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, and X. T. Tao, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
    [CrossRef]
  11. Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, Z. H. Cong, W. J. Sun, G. F. Jin, X. T. Tao, Y. X. Sun, and S. Zhang, “A diode side-pumped KTiOAsO4 Raman laser,” Opt. Express 17(9), 6968–6974 (2009).
    [CrossRef] [PubMed]
  12. D. Rousseau, R. P. Bauman, and S. Porto, “Normal mode determination in crystals,” J. Raman Spectrosc. 10(1), 253–290 (1981).
    [CrossRef]
  13. C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
    [CrossRef]
  14. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
    [CrossRef]
  15. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
    [CrossRef]
  16. T. Ikari, X. B. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
    [CrossRef] [PubMed]
  17. T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
    [CrossRef] [PubMed]
  18. B. Sun, S. X. Li, J. S. Liu, E. B. Li, and J. Q. Yao, “Terahertz-wave parametric oscillator with a misalignment-resistant tuning cavity,” Opt. Lett. 36(10), 1845–1847 (2011).
    [CrossRef] [PubMed]
  19. D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
    [CrossRef]
  20. A. J. Lee and H. M. Pask, “Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering,” Opt. Lett. 39(3), 442–445 (2014).
    [CrossRef] [PubMed]
  21. D. Fenimore, K. Schepler, U. Ramabadran, and S. McPherson, “Infrared corrected Sellmeier coefficients for potassium titanyl arsenate,” J. Opt. Soc. Am. B 12(5), 794–796 (1995).
    [CrossRef]
  22. K. Huang, “On the interaction between the radiation field and ionic crystals,” Proc. R. Soc. Lond. A Math. Phys. Sci. 208(1094), 352–365 (1951).
    [CrossRef]
  23. H. Ibach and H. Lüth, Solid-State Physics: An Introduction to Principles of Materials Science (Springer, 2009), Chap. 11.

2014 (1)

2013 (2)

2012 (1)

2011 (1)

2009 (3)

2008 (2)

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. Zhang, and H. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express 16(21), 17092–17097 (2008).
[CrossRef] [PubMed]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

2006 (2)

2002 (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

1998 (1)

1996 (1)

C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[CrossRef]

1995 (1)

1994 (2)

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[CrossRef]

A. H. Kung, “Narrowband mid-infrared generation using KTiOAsO4,” Appl. Phys. Lett. 65(9), 1082–1084 (1994).
[CrossRef]

1993 (1)

L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, “Properties of doped and undoped crystals of single domain KTiOAsO4,” Appl. Phys. Lett. 62(4), 346–348 (1993).
[CrossRef]

1981 (1)

D. Rousseau, R. P. Bauman, and S. Porto, “Normal mode determination in crystals,” J. Raman Spectrosc. 10(1), 253–290 (1981).
[CrossRef]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

1951 (1)

K. Huang, “On the interaction between the radiation field and ionic crystals,” Proc. R. Soc. Lond. A Math. Phys. Sci. 208(1094), 352–365 (1951).
[CrossRef]

Bai, F.

Ballman, A. A.

L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, “Properties of doped and undoped crystals of single domain KTiOAsO4,” Appl. Phys. Lett. 62(4), 346–348 (1993).
[CrossRef]

Bauman, R. P.

D. Rousseau, R. P. Bauman, and S. Porto, “Normal mode determination in crystals,” J. Raman Spectrosc. 10(1), 253–290 (1981).
[CrossRef]

Bhalla, A. S.

C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[CrossRef]

Bierlein, J. D.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[CrossRef]

L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, “Properties of doped and undoped crystals of single domain KTiOAsO4,” Appl. Phys. Lett. 62(4), 346–348 (1993).
[CrossRef]

Bosenberg, W. R.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[CrossRef]

Browne, P. G.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[CrossRef] [PubMed]

Burnham, R. L.

Canalias, C.

Chang, J.

Chen, H.

Cheng, L. K.

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[CrossRef]

L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, “Properties of doped and undoped crystals of single domain KTiOAsO4,” Appl. Phys. Lett. 62(4), 346–348 (1993).
[CrossRef]

Cheng, L. T.

L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, “Properties of doped and undoped crystals of single domain KTiOAsO4,” Appl. Phys. Lett. 62(4), 346–348 (1993).
[CrossRef]

Cong, Z. H.

Dunn, M. H.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[CrossRef] [PubMed]

Edwards, T. J.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[CrossRef] [PubMed]

Fan, S. Z.

Fenimore, D.

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

Guo, A. R.

C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[CrossRef]

Guo, R. Y.

C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[CrossRef]

He, J. L.

Huang, H. T.

Huang, K.

K. Huang, “On the interaction between the radiation field and ionic crystals,” Proc. R. Soc. Lond. A Math. Phys. Sci. 208(1094), 352–365 (1951).
[CrossRef]

Ikari, T.

Ito, H.

Jin, G. F.

Kasinski, J. J.

Katiyar, R. S.

C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[CrossRef]

Kawase, K.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

Kung, A. H.

A. H. Kung, “Narrowband mid-infrared generation using KTiOAsO4,” Appl. Phys. Lett. 65(9), 1082–1084 (1994).
[CrossRef]

Lan, W. X.

Laurell, F.

Lee, A. J.

Li, E. B.

Li, S. X.

Liu, J. S.

Liu, Z. J.

F. Bai, Q. P. Wang, Z. J. Liu, X. Y. Zhang, X. B. Wan, W. X. Lan, G. F. Jin, X. T. Tao, and Y. X. Sun, “Theoretical and experimental studies on output characteristics of an intracavity KTA OPO,” Opt. Express 20(2), 807–815 (2012).
[CrossRef] [PubMed]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, Z. H. Cong, W. J. Sun, G. F. Jin, X. T. Tao, Y. X. Sun, and S. Zhang, “A diode side-pumped KTiOAsO4 Raman laser,” Opt. Express 17(9), 6968–6974 (2009).
[CrossRef] [PubMed]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, Y. X. Sun, S. J. Zhang, and Z. J. Liu, “Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm,” Opt. Lett. 34(14), 2183–2185 (2009).
[CrossRef] [PubMed]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, and X. T. Tao, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[CrossRef]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, S. S. Zhang, J. Chang, S. Z. Fan, W. J. Sun, G. F. Jin, X. T. Tao, Y. X. Sun, S. J. Zhang, and Z. J. Liu, “Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm,” Opt. Lett. 34(14), 2183–2185 (2009).
[CrossRef] [PubMed]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. Zhang, and H. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express 16(21), 17092–17097 (2008).
[CrossRef] [PubMed]

Z. J. Liu, Q. P. Wang, X. Y. Zhang, Z. J. Liu, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, G. F. Jin, X. T. Tao, S. Zhang, and H. Zhang, “Coexistent optical parametric oscillation and stimulated Raman scattering in KTiOAsO4.,” Opt. Express 16(21), 17092–17097 (2008).
[CrossRef] [PubMed]

Loiacono, G.

McPherson, S.

Minamide, H.

Moulton, P. F.

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

Pasiskevicius, V.

Pask, H. M.

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

Porto, S.

D. Rousseau, R. P. Bauman, and S. Porto, “Normal mode determination in crystals,” J. Raman Spectrosc. 10(1), 253–290 (1981).
[CrossRef]

Rae, C. F.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[CrossRef] [PubMed]

Ramabadran, U.

Rousseau, D.

D. Rousseau, R. P. Bauman, and S. Porto, “Normal mode determination in crystals,” J. Raman Spectrosc. 10(1), 253–290 (1981).
[CrossRef]

Schepler, K.

Shen, D. Y.

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

Spurr, M. B.

Stolzenberger, R.

Stothard, D. J. M.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

Sun, B.

Sun, W. J.

Sun, Y. X.

Tao, R. W.

C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[CrossRef]

Tao, X. T.

Thomson, C. L.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

Tjörnhammar, S.

Tu, C. S.

C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[CrossRef]

Walsh, D.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
[CrossRef] [PubMed]

Wan, X. B.

Wang, H.

Wang, Q. P.

Wang, Y.

Webb, M. S.

Yao, J. Q.

Zeil, P.

Zhang, H.

Zhang, S.

Zhang, S. J.

Zhang, S. S.

Zhang, X. B.

Zhang, X. Y.

Zukauskas, A.

Zumsteg, F. C.

L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, “Properties of doped and undoped crystals of single domain KTiOAsO4,” Appl. Phys. Lett. 62(4), 346–348 (1993).
[CrossRef]

Appl. Phys. B (1)

Z. J. Liu, Q. P. Wang, X. Y. Zhang, J. Chang, H. Wang, S. S. Zhang, S. Z. Fan, W. J. Sun, G. F. Jin, and X. T. Tao, “A KTiOAsO4 Raman laser,” Appl. Phys. B 94(4), 585–588 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

W. R. Bosenberg, L. K. Cheng, and J. D. Bierlein, “Optical parametric frequency conversion properties of KTiOAsO4,” Appl. Phys. Lett. 65(22), 2765–2767 (1994).
[CrossRef]

L. K. Cheng, L. T. Cheng, J. D. Bierlein, F. C. Zumsteg, and A. A. Ballman, “Properties of doped and undoped crystals of single domain KTiOAsO4,” Appl. Phys. Lett. 62(4), 346–348 (1993).
[CrossRef]

A. H. Kung, “Narrowband mid-infrared generation using KTiOAsO4,” Appl. Phys. Lett. 65(9), 1082–1084 (1994).
[CrossRef]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

J. Appl. Phys. (1)

C. S. Tu, A. R. Guo, R. W. Tao, R. S. Katiyar, R. Y. Guo, and A. S. Bhalla, “Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals,” J. Appl. Phys. 79(6), 3235–3240 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

D. Rousseau, R. P. Bauman, and S. Porto, “Normal mode determination in crystals,” J. Raman Spectrosc. 10(1), 253–290 (1981).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

K. Huang, “On the interaction between the radiation field and ionic crystals,” Proc. R. Soc. Lond. A Math. Phys. Sci. 208(1094), 352–365 (1951).
[CrossRef]

Other (1)

H. Ibach and H. Lüth, Solid-State Physics: An Introduction to Principles of Materials Science (Springer, 2009), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the stimulated polariton scattering in a cuboid KTA crystal.

Fig. 2
Fig. 2

Angle-tuning characteristic of the Stokes wave in the stimulated polariton scattering of the KTA crystal.

Fig. 3
Fig. 3

(a) Shape of the crystal KTA used in the surface-emitted TPO; (b) Experimental setup of the surface-emitted TPO based on crystal KTA.

Fig. 4
Fig. 4

Measured polarization of the generated THz wave using an HDPE polarizer.

Fig. 5
Fig. 5

Measured energies of the THz and the Stokes waves at different frequencies.

Fig. 6
Fig. 6

Input-output characteristic of the KTA-TPO.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε r ( ω )= ε r ( ) ω LO 2 ω 2 ω TO 2 ω 2 ,
ω 2 = 1 ε r ( ω ) c 2 | k | 2 ,

Metrics